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Motivation – Galactic B-fields

● Magnetic fields affect all phases of 
ISM

● Accelerate cosmic rays via diffusive 
shock acceleration (Bell 1978)

http://sprg.ssl.berkeley.edu/~pulupa/illustrations/
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● Magnetic pressure balances out 
gravity on Galactic and molecular-
cloud scales, affecting gas flow in 
spiral arms and collapse within star-
forming clouds.

Collapsing magnetised cloud core

Silk et al. 2013



  

Motivation – Galactic B-fields

● Magnetic fields affect all phases of 
ISM

● Accelerate cosmic rays via diffusive 
shock acceleration (Bell 1978)

● Magnetic pressure balances out 
gravity on Galactic and molecular-
cloud scales, affecting gas flow in 
spiral arms and collapse within star-
forming clouds.

● Many structures within the Galaxy 
can only be explained by invoking 
magnetic fields:

● Non-thermal filaments in the 
Galactic Centre

Image credit: NRAO Adam Ginsburg and John Bally (Univ of 
Colorado - Boulder), Farhad Yusef-Zadeh (Northwestern), Bolocam 
Galactic Plane Survey team; GLIMPSE II team
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ISM

● Accelerate cosmic rays via diffusive 
shock acceleration (Bell 1978)

● Magnetic pressure balances out 
gravity on Galactic and molecular-
cloud scales, affecting gas flow in 
spiral arms and collapse within star-
forming clouds.

● Many structures within the Galaxy 
can only be explained by invoking 
magnetic fields:

● Non-thermal filaments in the 
Galactic Centre

● Broad-line absorption filaments 
towards the Brick molecular cloud.

Bally et al 2014
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Motivation – Galactic B-fields

● Magnetic fields affect all phases of 
ISM

● Accelerate cosmic rays via diffusive 
shock acceleration (Bell 1978)

● Magnetic pressure balances out 
gravity on Galactic and molecular-
cloud scales, affecting gas flow in 
spiral arms and collapse within star-
forming clouds.

● Many structures within the Galaxy 
can only be explained by invoking 
magnetic fields:

● Non-thermal filaments in the 
Galactic Centre

● Broad-line absorption filaments 
towards the Brick molecular cloud.

Pillai et al 2015

1.1mm continuum
Bolocam



  

Motivation – Galactic B-fields

MPIfR (R. Beck) and Newcastle University (A. Fletcher) NGC891M51
Fletcher et al. 2011

VLA + Effelsberg
6cm
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Motivation – Galactic B-fields

MPIfR (R. Beck) and Newcastle University (A. Fletcher) MPIfR, M. Krause & CFHT/ Coelum

● Know more about the magnetic fields in external galaxies than our own Milky Way

Krause 2009
NGC891

M51



  

Motivation – Galactic B-fields

● Problem is that we are embedded in our Galaxy: suffer from obscuration, confusion and 
depolarisation.

● We have to infer the magnetic field by modelling observations – requires large datasets.

S-PASS 2.3 GHz     Stokes Q

Galactic plane depolarised

Carretti et al. 2013
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Figure: James Green



  

Motivation – Galactic B-fields

● Several ways to determine 
magnetic field orientation and 
strength in the ISM:

● Optical and IR polarisation from 
dust-grains aligned along the field 
lines, e.g., Heiles et al. 2000

● Zeeman splitting of masers

● MAGMO: OH maser survey    
(Green et al. 2012)

● Synchrotron emission, e.g.,

● Haslam 408 MHz map, 

● Reich et al 1.4 GHz map

Haslam et al. 1982

Reich et al. 1982, 1986, 2001



  

Motivation – Galactic B-fields

● Several ways to determine 
magnetic field orientation and 
strength in the ISM:

● Optical and IR polarisation from 
dust-grains aligned along the field 
lines, e.g., Heiles et al. 2000

● Zeeman splitting of masers

● MAGMO: OH maser survey    
(Green et al. 2012)

● Synchrotron emission, e.g.,

● Haslam 408 MHz map, 

● Reich et al 1.4 GHz map

● Faraday rotation of polarised 
background sources

● Taylor et al. 2009

Faraday
rotation



  

Measuring B-fields: Faraday Rotation

● Faraday rotation:

Requires ionised gas threaded by a 
magnetic field

Frequency dependent change in the 
polarisation angle

● Properties of rotating gas described by 
the Rotation Measure:
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Measuring B-fields: Faraday Rotation

● Faraday rotation:

Requires ionised gas threaded by a 
magnetic field

Frequency dependent change in the 
polarisation angle

● Properties of rotating gas described by 
the Rotation Measure:

If electron-density is known, can 
calculate the line-of-sight B-field and 
vice-versa

(assuming the path-length is known)

PSR B1154-62
(Gaensler et al 1998)



  

Measuring B-fields: Faraday Rotation

Taylor et al. 2009

NVSS all-sky RM map



  

Measuring B-fields: Faraday Rotation

Oppermann et al. 2012

NVSS all-sky RM map
+ additions



  

Measuring B-fields: Faraday Rotation

JinLin Han, 2013

Sun

Pulsars



  

Measuring B-fields: Faraday Rotation

Jansson & Farrar 2012
JinLin Han, 2013

Sun

Binned 
RM data

Polarised
radio-continuum

Sun et al. 2008

Two most recent models of the Galactic B-field:

WMAPPulsars



  

Measuring B-fields: Faraday Rotation

Jansson & Farrar 2012
JinLin Han, 2013

Sun

Sun et al. 2008

Two most recent models of the Galactic B-field:

WMAPPulsars

Binned 
RM data

Polarised
radio-continuum



  

Measuring B-fields: Faraday Rotation

JinLin Han, 2013

RM DataSun

Jansson & Farrar 2012

Pulsars



  

Measuring B-fields: Faraday Rotation

JinLin Han, 2013

Model

Sun

Jansson & Farrar 2012

Pulsars

RM Data



  

Measuring B-fields: Faraday Rotation

Model

Jansson & Farrar 2012

Sun
RM Data



  

Measuring B-fields: Faraday Rotation

Jansson & Farrar 2012

Sun



  

Measuring B-fields: Faraday Rotation

Jansson & Farrar 2012

Sun

Evidence for field reversals between arms
Not seen in external galaxies – are these real? 
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Measuring B-fields: Faraday Rotation

Jansson & Farrar 2012

Evidence for field reversals between arms
Not seen in external galaxies – are these real? 

● Additional anchor-points within the 
Galaxy crucial for next generation of 
models

Pulsars (with accurate distances) or 
other local magnetic phenomena – 
interstellar bubbles

Credit: Spitzer/GLIMPSE team



  

Measuring B-fields: bubbles

● Discrete ionised objects in the 
Galaxy impose their own RM-
signature on the large scale map of 
Rotation Measures

● The net RM compared to the 
surrounding background is due to 
the environment local to the object

Harvey-Smith et al. 2011



  

Measuring B-fields: bubbles

● Discrete ionised objects in the 
Galaxy impose their own RM-
signature on the large scale map of 
Rotation Measures

● The net RM compared to the 
surrounding background is due to 
the environment local to the object

● Can use individial objects as probes 
of local B and ne

● Ultimate goal – use many objects at 
different distances to build up a 3D 
picture of the Galactic B-field

Harvey-Smith et al. 2011



  

Measuring B-fields: bubbles: SNR

Image Credit: NASA, ESA, Zolt Levay (STScI) 

● Fast expansion: shock waves 
compresses and amplify the swept 
up magnetic field

http://www.nasa.gov/
http://www.spacetelescope.org/
http://www.stsci.edu/


  

Measuring B-fields: bubbles: SNR

Kothes &  Brown 2009

Stokes I P. I. RM

Θ=0o

Radio-continuum

Θ=30o

Θ=60o

Θ=90o

Image Credit: NASA, ESA, Zolt Levay (STScI) 
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● Fast expansion: shock waves 
compresses and amplify the swept 
up magnetic field

http://www.nasa.gov/
http://www.spacetelescope.org/
http://www.stsci.edu/


  

Measuring B-fields: bubbles: HII regions

Figure:
Whiting et al 2009

Rosette
Nebula

Image: Andreas Fink / wikimedia



  

Measuring B-fields: bubbles: HII regions

Figure:
Whiting et al 2009

Savage et al. 2013

Rosette
Nebula

Image: Andreas Fink / wikimedia
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Measuring B-fields: bubbles: HII regions

Figure:
Whiting et al 2009

Savage et al. 2013

Rosette
Nebula

Image: Andreas Fink / wikimedia



  

Measuring B-fields: bubbles: HII regions

Figure:
Whiting et al 2009

Savage et al. 2013

Rosette
Nebula

Image: Andreas Fink / wikimedia

Compression X=4



  

The Gum Nebula: A magnetic bubble?

Diana Maques. galaxymap.org

Gum 1952

Hα (Finkbeiner 2003)



  

The Gum Nebula: A magnetic bubble?

Gum 1952

Diana Maques. galaxymap.org

Uncertain origin:

● Fossil Stromgren sphere Brandt et al. 
(1971)

● Old HII region Gum (1956), Beurmann 
(1972)

● Stellar wind bubble Weaver (1977)

● Old supernova remnant Reynolds 
(1976)

Hα (Finkbeiner 2003)



  

The Gum Nebula: A magnetic bubble?

Diana Maques. galaxymap.org

Uncertain origin:

● Fossil Stromgren sphere Brandt et al. 
(1971)

● Old HII region Gum (1956), Beurmann 
(1972)

● Stellar wind bubble Weaver (1977)

● Old supernova remnant Reynolds 
(1976)

current consensus

Hα (Finkbeiner 2003)

Gum 1952



  

The Gum Nebula: A magnetic bubble?

● Kinematics of the neutral gas: 

Fit kinematic shell model to associated cometary globules

●

Hawarden et al 1976

Woermann et al. 2001

Gum
Nebula



  

The Gum Nebula: A magnetic bubble?

● Kinematics of the neutral gas: 

Fit kinematic shell model to associated cometary globules

●

Hawarden et al 1976

Woermann et al. 2001

● ~10 km/s expansion velocity

● Suggests Zeta Pup's companion a likely 
SN progenitor ~1.5 Myr ago

Gum
Nebula



  

The Gum Nebula: A magnetic bubble?

● First systematic study of the B-field in the 
Gum was by Vallee et al. (1983)

● 32 RMs sampled across the Gum
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The Gum Nebula: A magnetic bubble?

● First systematic study of the B-field in the 
Gum was by Vallee et al. (1983)

● 32 RMs sampled across the Gum

● Found to be consistent with a simple shell 
model where B = 2 μGauss

Gum
Nebula

Sun



  

RMs through the nebula

● NVSS Taylor et al. 2009 currently the best RM-grid covering the Gum Nebula
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● NVSS Taylor et al. 2009 currently the best RM-grid covering the Gum Nebula

● Focus on the (relatively) unconfused upper region above b=5 deg

● Despite height above the plane (5 deg < b < 15 deg), RMs still require 
corrections for compact objects identified other data.

● Main assumption is the large-scale gradient behind the selected region.



  

RMs through the nebula



  

RMs through the nebula



  

RMs through the nebula

ne gradient



  

A near-field ionised shell model

● We model the nebula as a spherical 
ionised shell straddling the plane

● Shell is in the near-field meaning that 
the RM-signature is asymmetric in az 



  

A near-field ionised shell model

● We model the nebula as a spherical 
ionised shell straddling the plane

● Shell is in the near-field meaning that 
the RM-signature is asymmetric in az 

● Free parameters in the model:

● Bo … magnetic field strength

● Θ … B-field angle

● dr … thickness of shell

● Φouter … outer angular radius

● ne … electron density in shell

● f … filling factor

● X … compression factor

● δ(RM) … scatter hyperparameter



  

A near-field ionised shell model

Θ = 0 degrees

RM Image

Magnetic field angle



  

A near-field ionised shell model

Θ = 5 degrees

RM Image

Magnetic field angle



  

A near-field ionised shell model

Θ = 15 degrees

RM Image

Magnetic field angle



  

A near-field ionised shell model

Θ = 20 degrees

RM Image

Magnetic field angle



  

A near-field ionised shell model

Θ = 50 degrees

RM Image

Magnetic field angle



  

A near-field ionised shell model

Θ = 60 degrees

RM Image

Magnetic field angle



  

A near-field ionised shell model

Θ = 70 degrees

RM Image

Magnetic field angle



  

A near-field ionised shell model

Θ = 80 degrees

RM Image

Magnetic field angle



  

A near-field ionised shell model

Θ = 90 degrees

RM Image

Magnetic field angle



  

A near-field ionised shell model

Θ

X



  

A near-field ionised shell model

Θ

X



  

A near-field ionised shell model



  

A near-field ionised shell model
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constrain ne using other data
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● B and ne  are degenerate, so must 
constrain ne using other data

● Estimate electron-density from Hα

Extinction corrected Hα map:



  

Aside: electron density 

● B and ne  are degenerate, so must 
constrain ne using other data

● Estimate electron-density from Hα

● ne  = 1.4 +/- 0.4 cm-3 

● Set as prior in the fitting procedure

Electron density map:



  

Fitting the model

● Fit the model to the RM data 
using a maximum likelihood 
method

● Explore the posterior distribution 
using the MCMC sampler 
EMCEE

http://dan.iel.fm/emcee/current/



  

Fitting the model

● Fit the model to the RM data 
using a maximum likelihood 
method

● Explore the posterior distribution 
using the MCMC sampler 
EMCEE

●  Error bars on Taylor RM 
catalogue are underestimated for 
Galactic RMs. 

● Used a hyperparameter to scale 
the errorbars to be consistent 
with the scatter in the data (see 
Lahav et al. 2000, Hobson et al. 
2002)

● Hyperparameter also encodes 
small scale structure not in the 
model

http://dan.iel.fm/emcee/current/



  

● Fit the data three times assuming 
three guesses for RM-background 
of the Galaxy

● Flat median background

● Jansson & Farrah 2012 model

● Sun et al 2008 model

Results



  

● Fit the data three times assuming 
three guesses for RM-background 
of the Galaxy

● Flat median background

● Jansson & Farrah 2012 model

● Sun et al 2008 model

● Scaled Sun and Jannson models 
produced almost identical results.

● Results for all three backgrounds 
similar within errors

Results

Confidence
Plots:

Φouter dr n
e

θ B X f δ(RM)

δ(RM)

f

X

B

θ

n
e
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Φouter



  

● Fit the data three times assuming 
three guesses for RM-background 
of the Galaxy

● Flat median background

● Jansson & Farrah 2012 model

● Sun et al 2008 model

● Scaled Sun and Jannson models 
produced almost identical results.

● Results for all three backgrounds 
similar within errors

Results

Best fitting model:



  

● Fit the data three times assuming 
three guesses for RM-background 
of the Galaxy

● Flat median background

● Jansson & Farrah 2012 model

● Sun et al 2008 model

● Scaled Sun and Jannson models 
produced almost identical results.

● Results for all three backgrounds 
similar within errors

● OK, so what can we tell from the 
results?

Results

Best fitting model:



  

Results



  

Results

● Two results of significant interest:

● The compression factor at the edge of the nebula

● The angle of the magnetic field (equivalent to spiral arm pitch angle)



  

Results: compression factor

● We fit a compression factor at the 
edge of the shell to be

~1 assuming a flat RM background

~6 assuming a model gradient

● This relatively low compression 
suggests that the supernova theory of 
origin is less likely. We would expect a 
X>100 for such a large old SNR 
(currently modelling this for 
confirmation)

● X is approximately unity for a HII 
region and so is consistent, however, a 
classical HII region model cannot 
explain the shell-structure

SNR Evolution:

1) Free expansion

2) Adiabatic expansion

3) Radiative expansion
 

4) Slowing & dissipation



  

Results: compression factor

● We fit a compression factor at the 
edge of the shell to be

~1 assuming a flat RM background

~6 assuming a model gradient

● This relatively low compression 
suggests that the supernova theory of 
origin is less likely. We would expect a 
X>100 for such a large old SNR 
(currently modelling this for 
confirmation)

● X is approximately unity for a HII 
region and so is consistent, however, a 
classical HII region model cannot 
explain the shell-structure

● Weaver et al (1977) model of a wind-
blown-bubble matches the data very 
well and seems most likely.

X=6



  

Results: compression factor, depolarisation

Burn 1966



  

Results: compression factor, depolarisation

Burn 1966



  

Results: spectral index

PLANCK 30 GHz

S-PASS 2.3 GHz



  

Results: spectral index

● Spectral index over the shell is 
consistent with thermal emission

● More detailed analysis planned for 
future papers

PLANCK 30 GHz

S-PASS 2.3 GHz

TT-plot
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● -6 to  -11.5 degrees

● Large volumes or

large area covered
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● We find

● Starlight polarisation measurements 
 within 40pc of the Sun suggest 
even more extreme local deviations 
(Frisch et al. 2012) 

Frisch et al. 2012



  

Results: magnetic field angle

● Prior pitch angle measurements: 

● -6 to  -11.5 degrees

● Large volumes or

large area covered

● Our measurements localised to a 
region of space ~350pc in scale

● We find

● Starlight polarisation measurements 
 within 40pc of the Sun suggest 
even more extreme local deviations 
(Frisch et al. 2012) 

● A vertical deviation has been seen 
in one external Galaxy, e.g.,     
Heald (2012)

● Such deviations likely common to 
star-forming galaxies

Heald et al. 2012



  

Summary and conclusions

● RMs for the Gum nebula well fitted by a simple ionised shell model

● Origin of nebula is unlikely to be a SNR as previously claimed

● Best fitting model is consistent with the Weaver (1977)  model of a wind-blown 
-bubble

● We constrain the pitch angle of the ordered field to                                  
significantly different to measurements on larger scales

● Such deviations likely a common feature of the star-formation processes in 
galaxies

● This work illustrates how challenging the analysis of RM data will be in the age 
of the SKA and precursors.

Thanks for listening!
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