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Talk Outline

● Why study molecular gas in the Galaxy?

● A little bit of theory

● Spectra from rotating molecules

● Radiation transport in the ISM

● Getting physical parameters from observations

● Putting it all together – real world examples
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Why study molecular gas in the Galaxy?

● CO a great proxy for H2: BU-FCRAO Galactic Ring Survey (Jackson et al 2006)
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● Atomic & molecular gas forms 99% of the ISM by mass (1% dust)

● About half of this is HI and half H2 

● Molecular gas is a key part of the Galactic ecosystem

● Emission (and absorption) lines act as probes of local physical conditions

● Relative chemical abundances change with time, forming chemical clocks

● The velocities of Doppler shifted gas can reveal dynamic processes 
(accretion, outflows),  the large scale structure of the Galaxy (spiral arms)

● Molecular gas is beautiful!
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A little bit of Theory
Emission from molecules

● Molecular transitions fall into three energy bins:

● Electronic: ΔE ≈ a few eV, visible or UV emission lines

● Vibrational (nuclear vibrations): ΔE ≈ 10-1 to 10-2 eV, infrared lines

● Rotational: ΔE ≈ 10-1 eV, radio emission lines (cm to mm wavelengths)
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● Molecular transitions fall into three energy bins:

● Electronic: ΔE ≈ a few eV, visible or UV emission lines

● Vibrational (nuclear vibrations): ΔE ≈ 10-1 to 10-2 eV, infrared lines

● Rotational: ΔE ≈ 10-1 eV, radio emission lines (cm to mm wavelengths)

● This talk describes only rotational lines at radio wavelengths

● Classical picture of rotation:

● Moment of inertia I around axis i

● Kinetic energy

● In terms of angular mometum                     :
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● Four types of rotor configuration, grouped by symmetry:

● For simplicity consider only symmetric rotors: 

one unique and two identical axes

● To emit radiation the molecule must have a permanent dipole moment μ, 
arising from the asymmetric distribution of +ve and –ve charges on the 
molecule.

● H2, the most abundant molecule, has a low μ and so can not usually emit

● CO is used as proxy assuming a constant ratio [CO/H2] = 10–4 

A little bit of Theory
Emission from rotating molecules
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A little bit of Theory
Emission from rotating molecules

● Energy levels in a classical rigid symmetric rotor given by:

● Quantised expression can be obtained from the correspondence principal by 
substituting the angular momentum operator                            for P.

●● The molecule rotates around the principal 
axis Z with angular momentum Pz. The Z 
axis precesses around the total angular 
momentum P

● The projection of the total angular 
momentum on to the principal axis is 
restricted to values of Kħ, with K=±0, ±1, …

● Energy levels given by:

with                                             being the rotational constants  of the molecule      
               

Z



  

A little bit of Theory
Emission from rotating molecules

● For a simple rigid rotor the frequencies in a ΔJ +/- 1 transition are given by:

                                           … at least to first order, as A-B is small.
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● For a simple rigid rotor the frequencies in a ΔJ +/- 1 transition are given by:

                                           … at least to first order

From Gordy & Cook 1970
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● Molecules are not rigid rotors, but are affected by centripetal distortion

● Bonds lengthen, leading to a change in I and B.

● Energy levels modified by an empirical distortion term D

●

● The frequency of a rotational transition                             is then:

                                                                  … now dependant on K

Without With
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A little bit of Theory
Emission from rotating molecules

● Total degeneracy of any J,K level is then:

● Degenerate (overlapping) energy levels 

● Energy of any J-level is degenerate by 
a factor

● For symmetric tops, E–K = E+K so         
K-levels (>0) are doubly degenerate

● Symmetric tops with three-fold 
symmetry (e.g., CH3CN, NH3 ) also 
have degeneracy due to quantum 
mechanical symmetry considerations 
associated with spins on the three 
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E
ne

rg
y

K

0      1      2      3     4      5     6    7



  

A little bit of Theory
Emission from rotating molecules

From Loren & 
Mundy 1984



  

A little bit of Theory
Emission from rotating molecules

From Loren & Mundy 1984



  

A little bit of Theory
Ensembles of rotating molecules

● In a population the number of molecules at a particular rotational energy will 
be governed by the Boltzmann Distribution:



  

A little bit of Theory
Ensembles of rotating molecules

● In a population the number of molecules at a particular rotational energy will 
be governed by the Boltzmann Distribution:

● Tex is the excitation temperature, equal to Tkin under LTE conditions



  

A little bit of Theory
Ensembles of rotating molecules

● In a population the number of molecules at a particular rotational energy will 
be governed by the Boltzmann Distribution:

● Tex is the excitation temperature, equal to Tkin under LTE conditions



  

A little bit of Theory
Ensembles of rotating molecules

● In a population the number of molecules at a particular rotational energy will 
be governed by the Boltzmann Distribution:

● Tex is the excitation temperature, equal to Tkin under LTE conditions



  

A little bit of Theory
Ensembles of rotating molecules

● In a population the number of molecules at a particular rotational energy will 
be governed by the Boltzmann Distribution:

● Tex is the excitation temperature, equal to Tkin under LTE conditions



  

A little bit of Theory
Ensembles of rotating molecules

● In a population the number of molecules at a particular rotational energy will 
be governed by the Boltzmann Distribution:

● Tex is the excitation temperature, equal to Tkin under LTE conditions



  

A little bit of Theory
Ensembles of rotating molecules

● The total number density of molecules can be inferred from:



  

A little bit of Theory
Ensembles of rotating molecules

● The total number density of molecules can be inferred from:



  

A little bit of Theory
Ensembles of rotating molecules

● The total number density of molecules can be inferred from:

with Q(Tex) being the partition function 



  

A little bit of Theory
Ensembles of rotating molecules

● The bigger the molecule, the larger 
the partition function

● At any given temperature the 
molecules can be distributed over a 
larger number of available energy 
levels

Slide – John Storey
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A little bit of Theory
Aside: Line profiles

● Gaussian line profiles often assumed for spectral lines

● Proximity of other molecules affects the radiation emitted:

Thermal Doppler broadening:

Turbulent Doppler broadening:
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A little bit of Theory
Molecular excitation and Einstein coefficients

● Intrinsic properties of the transition and molecule:

● Collisions with H2 also excite and de-excite levels:

U

L

● Consider an ensemble of molecules 
with 2 energy levels Eu and El

● Bathed in a radiation field of specific 
intensity Iν

● Einstein coefficients describe the 
radiative transitions between levels:

H
2
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Molecular excitation and Einstein coefficients

● In the steady state the number of molecules in the levels remain constant

● Assuming LTE conditions the Boltzmann distribution governs each

● If the radiation originates from a blackbody (e.g., the CMB) with a temperature 
Tbg, the excitation temperature and kinetic temperature of a gas bathed in a 
background radiation field of temperature Tbg is given by:

● Two important cases: collisions unimportant or collisions dominate
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A little bit of Theory
Molecular excitation and Einstein coefficients

● Collisions Unimportant:

Mostly radiative excitation and population is in equilibrium with background

● Collisions dominate:

Mostly collisonal excitation and population is in thermal equilibrium

● Useful quantity: critical density – density of H2 at which downward collisions 
equal downward radiative processes

● Measure of the density at which collisional excitation becomes effective
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Radiative Transfer

● Now we can quantify how spectral lines are created – only part of the puzzle.

● In the real world the spectral lines are modified by the medium through which 
they pass – radiative transfer.

● Radiative Transfer Equation:

● Related to the molecular emission via the molecule's Einstein Coefficients:



  

A little bit of Theory
Radiative Transfer

● The definition of optical depth is useful:



  

A little bit of Theory
Radiative Transfer

● The definition of optical depth is useful:

Where      =             completely describes the

medium and is known as the source function



  

A little bit of Theory
Radiative Transfer

● The definition of optical depth is useful:

Where      =             completely describes the

medium and is known as the source function

● Solving the radiative transfer equation we get:



  

A little bit of Theory
Radiative Transfer

● The definition of optical depth is useful:

Where      =             completely describes the

medium and is known as the source function

● Solving the radiative transfer equation we get:

Attenuated emission



  

A little bit of Theory
Radiative Transfer

● The definition of optical depth is useful:

Where      =             completely describes the

medium and is known as the source function

● Solving the radiative transfer equation we get:

Attenuated emission Emitting medium



  

A little bit of Theory
Radiative Transfer

● The definition of optical depth is useful:

Where      =             completely describes the

medium and is known as the source function

● Solving the radiative transfer equation we get:

General solution assuming an isothermal homogeneous medium

Attenuated emission Emitting medium
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Radiative Transfer

● Brightness temperature is defined as the temperature measured of the source 
function was well approximated by the Rayleigh-Jeans law:

● The solution to the radiative transfer equation may expressed as

● Two special cases:

Optically Thin Emission:

Optically Thick Emission:
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A little bit of Theory
Physical parameters from observations

● Optically thick transition:

Brightness temperature of a line saturates at Tex

Under LTE conditions Tkin = Tex

● Optically thin transition:

Intensity under a line proportional to Tex and the number of molecules



  

A little bit of Theory
Physical parameters from observations

● The rotation diagram

K=0 K=1 K=2 K=3 K=4
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Ionised Gas 
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Hot Core
(NH3)

Clump 
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Cesaroni  2001, 2005



  

Case Study
Hot Molecular Cores

Hot Core
(NH3)

Cesaroni  2001, 2005

≤ 3” ≈ 0.1pc ≈ 20k AU



  

From Van Dishoeck et al 1998, after Tielens et al 1991

Case Study
Hot Molecular Cores - Chemistry

● Temperature gradient leads to an 'onion-layer' effect.

● Volatile non-polar ices evaporate at lower T,  creating chemical shells.

1000 AU



  

TIME (yrs)

Case Study
Hot Molecular Cores - Chemistry

● However chemistry is also time-dependant as central object is evolving

● Variables: initial abundances, geometry, mass, presence of shocks etc

A
B
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Case Study
Hot Molecular Cores - Chemistry

MSX 8 µm image of the Galactic plane

Methyl-cyanide, CH3CN Methanol, CH3OH

13CO N2H+ HCO+ H13CO+ HCN HNC



  

Case Study
Hot Molecular Cores - Chemistry

CH3CN (5-4)

Molecule:

HCN (1-0)

HNC (1-0)

HCO+ (1-0)

N2H+ (1-0)

Rotational Temperatures, Column Density

Rich-chemistry tracer.

Ratio dependant on gas temperature, 

probes outer envelope.

Signatures or outfall & inflow,

sensitive to optical depth.

Excellent dense gas tracer- probe of central core.

Usage:

CH3OH (1-0) Temperature probe, abundance vs # maser spots. 

H13CO+ (1-0)

& (6-5)
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Image credit: Johannes Schedler 

H-alpha image
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Case Study
Dissecting a star-forming region 

Ionised 
HII region
Ionised 
HII region

~ 75''  = 0.7 pc
Image credit: Johannes Schedler 

Sequential star formation?
 - 42 sources with IR excess.
 - NE-SW reddened colour gradient 

  implies recent sequential SF

Ionised gas:
- Peaked & confined in west
- Electron temperature gradient

Other tracers of star-formation:
 - Methanol Masers, Water Masers  

- CO band-head (disks, winds?)

Radio
Peak

Methanol
MasersFigeredo et al 2002

H-alpha image



  

Case Study
Dissecting a star-forming region 

~ 75''  = 0.7 pc
Image credit: Johannes Schedler 

Hill et al observed the region as part of a large 1.2-
mm continuum survey  

- Hill et al 2005, 2006

Sensitive to cool dust & free-free emission 

SEST 12m antenna

SIMBA bolometer
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- Hill et al 2005, 2006

Sensitive to cool dust & free-free emission 

SEST 12m antenna

SIMBA bolometer
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Mopra:

CO … diffuse gas

HCO+ … kinematics

CS … intermediate gas

N2H+ … dense gas

Compact Array:

Ammonia (NH3)  … thermometer

H2O masers         … kinematics

23 GHz continuum 
- Ionised gas
- Ultra-compact HII regions
- Hyper-compact HII regions

Mopra:
 = 3-mm (85 - 115 GHz)
22-m dish =  35” beam

Compact Array:
 = 12-mm (~22 GHz)
Config:   EW367    750D    H75
                ~10”      ~10”      ~24”
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White Contours         = 1.2mm emission
Thick Black Contour = 23 GHz continuum
Beam FWHM           ~ 10''

● NH3 emission follows 1.2-mm (except in HII region)
● Resolves 'clumps' (~0.5pc)  into 'cores' (~0.1pc).
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● Temperature gradient away from the HII region
● Hot spots in eastern arm + free-free emission
● Gas is being dispersed in east & heated in west
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● FELLWALKER used to decompose emission into 'cores'
● 25 cores found, M =  5 → 500 solar masses

● Values corrected for abundance variations by  
comparison to new 450 micron data from APEX (Andre 
2008)



  

Case Study
Dissecting a star-forming region 

● FELLWALKER used to decompose emission into 'cores'
● 25 cores found, M =  5 → 500 solar masses

● Values corrected for abundance variations by  
comparison to new 450 micron data from APEX (Andre 
2008)

● Clump mass & luminosity suggest 8 – 50 M
sun

 stars are 

forming in each clump
● Weak evidence for an evolutionary gradient  
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● Find that all cores are at least gravitationally bound
● Magnetic support:

● Find that fields of 1 → 40 mG required
● Higher than ~ 1 → 6 mG typically measured in MSF
● Cores likely to be collapsing

● Virial masses:
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H
2
O masers -

Indicators of outflow activity
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CO (1-0)

Mopra data
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● Classic velocity signature of an expanding shell
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● Green = CO Blue = CS Red = N
2
H+

3-colour column density map

NH
3
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● Evidence for bulk gas motions seen in line profiles (Park '96)
● Clump is dominated by significantly blue-skewed profiles

● Infalling gas motions
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●  HII region expanding into a dense molecular cloud

●  Heating and/or dispersing the immediate environment 

●  Very young massive star formation observed in dark clumps

●  Cores collapsing while also showing evidence of outflows

●  Some evidence of an age gradient - triggering?



  

Summary

● Molecular lines are an incredibly useful diagnostic of processes in the Galaxy

● With a few simple assumptions you can determine the physical and chemical 
and kinematic conditions in star-formation regions

● For a more detailed description please see the notes.

Thanks for listening!
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