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 Why study molecular gas in the Galaxy?

« Alittle bit of theory
« Spectra from rotating molecules
« Radiation transport in the ISM
» Getting physical parameters from observations

e Putting it all together — real world examples
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« CO a great proxy for H,: BU-FCRAO Galactic Ring Survey (Jackson et al 2006)
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« About half of this is HI and half H,

 Molecular gas is a key part of the Galactic ecosystem
« Emission (and absorption) lines act as probes of local physical conditions

« Relative chemical abundances change with time, forming chemical clocks
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Molecules in the Interstellar Medium or Circumstellar Shells (as of 05/2012)
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Molecules in the Interstellar Medium or Circumstellar Shells (as of 05/2012)
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Circinus Galaxy Hubble Space Telescope * WFPC2
MNASA and A. Wilson (University of Maryland) » STScl-PRC00-37

Image: NASA



THE UNIVERSITY OF

= SYONEY  \Why study molecular gas in the Galaxy?

Velocity
{u“f s

Image: B. Koribalski



THE UNIVERSITY OF

SYDNEY - \Why study molecular gas in the Galaxy?

Dame et al 2001



THE UNIVERSITY OF

SYDNEY  \Why study molecular gas in the Galaxy?

'y‘ e ¥ " LT

»

[EeE—

158 HUEEGH

e gt
sty

ettt e i o d g gl

T TR T R G | o4 a
B B BN o N &8

Dame et al 2001



THE UNIVERSITY OF

SYDNEY - \Why study molecular gas in the Galaxy?

e Atomic & molecular gas forms 99% of the ISM by mass (1% dust)

« About half of this is HI and half H,

 Molecular gas is a key part of the Galactic ecosystem
« Emission (and absorption) lines act as probes of local physical conditions
« Relative chemical abundances change with time, forming chemical clocks

 The velocities of Doppler shifted gas can reveal dynamic processes
(accretion, outflows), the large scale structure of the Galaxy (spiral arms)



THE UNIVERSITY OF

SYDNEY - \Why study molecular gas in the Galaxy?

e Atomic & molecular gas forms 99% of the ISM by mass (1% dust)

« About half of this is HI and half H,

 Molecular gas is a key part of the Galactic ecosystem
« Emission (and absorption) lines act as probes of local physical conditions
« Relative chemical abundances change with time, forming chemical clocks

 The velocities of Doppler shifted gas can reveal dynamic processes
(accretion, outflows), the large scale structure of the Galaxy (spiral arms)

 Molecular gas is beautiful!
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Emission from molecules

* Molecular transitions fall into three energy bins:

« Electronic: AE = a few eV, visible or UV emission lines
 Vibrational (nuclear vibrations): AE = 10-1 to 102 eV, infrared lines

* Rotational: AE = 10-1 eV, radio emission lines (cm to mm wavelengths)
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Emission from rotating molecules

* Molecular transitions fall into three energy bins:

« Electronic: AE = a few eV, visible or UV emission lines
 Vibrational (nuclear vibrations): AE = 10-1 to 102 eV, infrared lines

* Rotational: AE = 10-1 eV, radio emission lines (cm to mm wavelengths)

« This talk describes only rotational lines at radio wavelengths

e Classical picture of rotation:

* Moment of inertia I around axis i

2
I = E m; I;

A B
« Kinetic elnergy
Ezﬁ[lawerIbwngIng], ) )
* Interms of angular mometum P, =1, wa: ' I's
Pz Py P?

B=o, T, T P2 = P2+ P} + P
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Emission from rotating molecules

* Four types of rotor configuration, grouped by symmetry:

Spherical Rotors: I,=1 =L, e.g., CHy, SiH,.

Linear Rotors: I,=01,=1., eg., CO,  HCO+, HCN, HNC, N,H™
Symmetric Rotors: I, =1, # 1., e.g., NH;, CH3CN, CH;CL.
Asymmetric Rotors: I, # 1, # L., e.g., H,O, CH3OH.
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arising from the asymmetric distribution of +ve and —ve charges on the
molecule.
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Emission from rotating molecules

* Four types of rotor configuration, grouped by symmetry:

Spherical Rotors: I, =1 =1, e.g.. CHy, SiH,.

Linear Rotors: I,=01,=1., eg., CO,  HCO+, HCN, HNC, N,H™
Symmetric Rotors: I, =1, # 1., e.g., NH;, CH3CN, CH;CL.
Asymmetric Rotors: I, # 1, # L., e.g., H,O, CH3OH. |

For simplicity consider only symmetric rotors:

one unique and two identical axes

« To emit radiation the molecule must have a permanent dipole moment u,
arising from the asymmetric distribution of +ve and —ve charges on the
molecule.

« H,, the most abundant molecule, has a low y and so can not usually emit

« COis used as proxy assuming a constant ratio [CO/H,] = 104
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« The projection of the total angular
momentum on to the principal axis is
restricted to values of Kh, with K=z0, 1, ...
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Emission from rotating molecules

Energy levels in a classical rigid symmetric rotor given by:

P2 p2 p? P2 11 .
E = ——_—S4-_° = _— 4 - P>
o, 2[, ' 2 oI, ' \2[, 2L,

* Quantised expression can be obtained from the correspondence principal by
substituting the angular momentum operator J* — J(J + 1)h?* for P. h=h/2n

¢ The molecule rotates around the principal
axis Z with angular momentum P,. The Z P

axis precesses around the total angular
momentum P

« The projection of the total angular
momentum on to the principal axis is
restricted to values of Kh, with K=z0, 1, ...

 Energy levels givenby: . O
E;jx = hBJ(J + 1) + h(A — B)K?

h
ith A= —— and B=
Wlth 4?TI|| an 41‘TIJ_

being the rotational constants of the molecule



spiEy A little bit of Theory

Emission from rotating molecules

« For a simple rigid rotor the frequencies in a AJ +/- 1 transition are given by:

v=2B(J+1) ... at least to first order, as A-B is small.
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« For a simple rigid rotor the frequencies in a AJ +/- 1 transition are given by:

v=2B(J+1) ... at least to first order
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Bonds lengthen, leading to a change in I and B.

Energy levels modified by an empirical distortion term D
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The frequency of a rotational transition J —J+ 1, AK =0 Is then:
v=2(J+1)(B—-DjkK?) —4D;(J+1)* ... now dependant on K
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Emission from rotating molecules

 Molecules are not rigid rotors, but are affected by centripetal distortion
 Bonds lengthen, leading to a change in I and B.
« Energy levels modified by an empirical distortion term D

e Ejx=hBJJ+1)+(A-BK*—-D;J*(J+1)* — DixJ(J + 1)K* — DgK".

 The frequency of a rotational transition J— J+ 1, AK=0 is then:

v=2(J+1)(B—-DjkK?) —4D;(J+1)* ... now dependant on K
Without ~ With
J=9 A
b J=9

J=8 ——
! ——J =8 )
[ T=7 Greatly exaggerated stretching
i —— J:7 - = 1
- J =6 —— L D/B = 0. 5
— —t7=% - most molecules have D/B ~ 10
rJ =5 —— E
- J =4 —+— ——
[ J =3 B e

J=2 ——
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m
" emwd T & & B B
n L n L

HlHH -
Rulllsetk

Energy

s§§é$§$i$§:§§§§§§

© IillH-

= K-
Ml HHA

- see

s -
- BOAu®eF - A @ B 3
I

ame

Al

) =]



spiEy A little bit of Theory

Emission from rotating molecules
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 Degenerate (overlapping) energy levels
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Emission from rotating molecules
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Emission from rotating molecules

 Degenerate (overlapping) energy levels

 Energy of any J-level is degenerate by
a factor g, =2J +1
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Emission from rotating molecules

 Degenerate (overlapping) energy levels
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mechanical symmetry considerations
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 Total degeneracy of any J,K level is then: €, S(I, K)
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Emission from rotating molecules
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Emission from rotating molecules
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* In a population the number of molecules at a particular rotational energy will
be governed by the Boltzmann Distribution:

N _ 8J  —(Ej—Eo)/kTex
o &o

« Toy IS the excitation temperature, equal to T,;, under LTE conditions

A) Boltzmann relation without degeneracy B) Boltzmann relation with degeneracy
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* The total number density of molecules can be inferred from:
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* The total number density of molecules can be inferred from:
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Ensembles of rotating molecules

* The total number density of molecules can be inferred from:

o0 o0
_E. Il
n — Z N =n9) — =g Z o~Bi/kT _ 10 (Bo/kT(y ()
i— - £0
1=0 i=0
with Q(T,) being the partition function Q(T Z g e —Ei/kTex

« Total intensity in a rotational transition:
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Ensembles of rotating molecules

* The total number density of molecules can be inferred from:

o0 o0
_E. Il
n — Z N =n9) — =g Z o~Bi/kT _ 10 (Bo/kT(y ()
i— - £0
1=0 i=0
with Q(T,) being the partition function Q(T Z g e —Ei/kTex

« Total intensity in a rotational transition:

210 g, S(1,K) o~ (FaB)/Ts

Intensity o

Q (TE}{)
Dipole Number Degeneracy | | Partition Transition Excitation
moment | | density function energy Temperature

« Full formula requires consideration of radiation transport
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Aside: Line profiles

« Gaussian line profiles often assumed for spectral lines

d)(br) _ \,/4 11’1 2 0_4ln2(ﬁ)2
Avy/m

* Proximity of other molecules affects the radiation emitted:

Thermal Doppler broadening:

— 2k Tyin
A Vewnm — 2 1]?1(2) @ :
C

m

Turbulent Doppler broadening:

f—— 2k Ty
A Vewnm — 2 IH(Q) @ : + Vtg
C
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Molecular excitation and Einstein coefficients

« Consider an ensemble of molecules —— ~ U
with 2 energy levels Eu and El
H,—» WL
« Bathed in a radiation field of specific .

intensity |,

 Einstein coefficients describe the
radiative transitions between levels:

A, = Probability of spontaneous radiative decay from the upper to the lower energy level (s71).
[ B, = Probability of stimulated emission from the upper to the lower energy level.

[ By, = Probability of photon absorption leading to a transition from the lower to upper energy
level.

Intrinsic properties of the transition and molecule:
16 73 3 | 2‘ B c?
BEDY RS D TVE

Aul Aul Blu g = Bul Zu

Collisions with H, also excite and de-excite levels:
Cip. = npg, tu = Rate of collision induced transitions from lower to upper level

Cu = np, Ya = Rate of collision induced transitions from upper to lower level
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Molecular excitation and Einstein coefficients

In the steady state the number of molecules in the levels remain constant

Iy, [Aul + Bul Iu + Cul] — 1] [Blu Tu + Clu]

« Assuming LTE conditions the Boltzmann distribution governs each

& — & C_(EU_EI)/L{ Tex Clu gu E El)fkaln
11 gl Cul gl

 If the radiation originates from a blackbody (e.g., the CMB) with a temperature
Tpg, the excitation temperature and kinetic temperature of a gas bathed in a

background radiation field of temperature Thg is given by:

o(Bu—E)/kTex _ Au(l +J,(Thg)] + Cu
AulJy(Tbg) + C, e Bu/kTuin

 Two important cases: collisions unimportant or collisions dominate
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Molecular excitation and Einstein coefficients

. Collisions Unimportant: T, = T,

Mostly radiative excitation and population is in equilibrium with background

e Collisions dominate: Tex = Thin

Mostly collisonal excitation and population is in thermal equilibrium

« Useful quantity: critical density — density of H, at which downward collisions
equal downward radiative processes

Aul(l + J(Tbg)) - Aul

Aul + AulJy(Tbg) — I, Yul Herit = Yul -~ Yul

« Measure of the density at which collisional excitation becomes effective
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Radiative Transfer

 Now we can quantify how spectral lines are created — only part of the puzzle.

* |Inthe real world the spectral lines are mOdIerd by the medium throuqh which

they pass — radiative transfer. : < :

_____

« Radiative Transfer Equation:
dl,
ds

\
‘\ Radiation

/ SOUI’CE

= —kyly + €

_________

| |
| > |

» Related to the molecular emission via the molecule's Einstein Coefficients:

hyy hyy

n,Ago(v) Ry = e (B, — nyBu)o(v)




sprEy A little bit of Theory

Radiative Transfer

* The definition of optical depth is useful: I - :
TU — _f{ryds A i | B
I’,’ dt i = - kdx ‘. Radiation
Q ’ i / SOUI‘CE
l'\ dx '

I
| > |




sprEy A little bit of Theory

Radiative Transfer

* The definition of optical depth is useful: | < I
TU —_ _h:yds ,"-- """" ”"-E‘ g T R
I’,’ dt! = - kdx *. Radiation
’ source
dl, € | ./
U
dTy H:y \‘\\ -(-1)-( ________ 1
B . ) Isothermal medium _
Where Sy = Eu/hu completely describes the | > l

medium and is known as the source function



sprEy A little bit of Theory

Radiative Transfer

* The definition of optical depth is useful:

——
.
~
-
e

T, = —k,ds T ceet T
I’,' dt i =-xdx *. Radiation
. | source

dl, & < ./

I — IL"' - SL"' In‘
dTy Ky d" ________ .
~ . ) Isothermal medium -
Where S, = Eu/hu completely describes the | > !

medium and is known as the source function

e Solving the radiative transfer equation we get:

Iu,s — II,’[)C_T” -+ Sy(l — C_Ty)



sprEy A little bit of Theory

Radiative Transfer

* The definition of optical depth is useful: | < I
TU —_ _h:yds A ! | N
I’,’ dt! = - kdx *. Radiation
’ source
dl, € | ./
U
dTy H:y \‘\\ -(-1)-( ________
) ) S Isothermal medium ./
Where Sy = Eu/hu completely describes the | > |

medium and is known as the source function

e Solving the radiative transfer equation we get:

Iu,s :“év,[)e})—}_ Su(l o O_Ty)

~_

Attenuated emission



sprEy A little bit of Theory

Radiative Transfer

* The definition of optical depth is useful: | - I
TU — _h:yds ,"-- ----- ""-E‘ | - N
I’,’ dt! = - kdx *. Radiation
’ i source
dl, .« 4 o/
I —_ IL"' - SL"' In‘
dTy H:y \‘\\ -(-1)-( ________ 1
) ) N Isothermal medium ./
Where Sy = Eu/hu completely describes the | > l

medium and is known as the source function

e Solving the radiative transfer equation we get:

[s =1,0e™ +/1—0_“’D

Attenuated emission Emitting medium



sprEy A little bit of Theory

Radiative Transfer

* The definition of optical depth is useful: | < I
TU —_ _h:yds A ! | B
I’,’ dt! = - kdx *. Radiation
’ i source
d, . e 4 o/
dTy H:y \"\\ -(-b-( ________
) ) I Isothermal medium ./
Where Sy = Eu/hu completely describes the | > l
0 X

medium and is known as the source function

e Solving the radiative transfer equation we get:

IU.,S — IV,DC_TH + Sv(l o O_Ty)

Attenuated emission Emitting medium

General solution assuming an isothermal homogeneous medium
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Radiative Transfer

* Brightness temperature is defined as the temperature measured of the source
function was well approximated by the Rayleigh-Jeans law:

c? hv
Ty = 5ioaBT) = L 0(T) 3, (T) = (e BT — 1)
« The solution to the radiative transfer equation may expressed as
hv hv
Ty =—Ju,(Thg)e ™+ —J,(Ts) (1 —e ™)
k k
 Two special cases:
Optically Thin Emission: (7 < 1) Ty, = h—; Ju(Ts) — Ju(Tog)|7
Optically Thick Emission: (7 > 1) T, = hv J,(Ts) — Jo(Thy)]
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#*

Physical parameters from observations

« Optically thick transition:
Brightness temperature of a line saturates at Tex
Under LTE conditions Tkin = Tex

Tkin — Ts — % In|1 + (hy/k)

« Optically thin transition:

Intensity under a line proportional to Tex and the number of molecules

Skm? [ T,
N, = Ty, d
A yhc? / b (1 — CT”’)

8.9

N = D2 AT QT QTe) = Y g e BT

Eu
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Physical parameters from observations

* The rotation diagram N
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Hot Molecular Cores - Chemistry

1000 AU From Van Dishoeck et al 1998, after Tielens et al 1991
M
.-.-1{] ;:1“ stl'['l?fl'ﬂ
Hot core . \ iy |
CcoO coO
CH CN LII%CIII 2 1l'IE'II_,| 3 '1
\ \ CH;0H, CO CH;0H,
U‘V \t H,0 ice — ' ‘ -
| ' ' €O, ice — -
, rl ! €O ice ——m
| | | N,
| | | 0
Si0 CH ,0H ice / / / | apolar
co “cS sublimation ice » segregation . polar ices ices
Mpley orea™ -
T(dust)~100 K ~90 K ~50 K ~20 K

Ti(gas)=200-1000 K

« Temperature gradient leads to an 'onion-layer' effect.

« Volatile non-polar ices evaporate at lower T, creating chemical shells.
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 However chemistry is also time-dependant as central object is evolving
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« Variables: initial abundances, geometry, mass, presence of shocks etc
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Hot Molecular Cores - Chemistry

Molecule: Usage:
= M | CH,CN(5-4) Rotational Temperatures, Column Density
2=f ]
- et qﬁmwm,mwj & (6-5) Rich-chemistry tracer.
HCO"(1-0)

Signatures or outfall & inflow,

| sensitive to optical depth.

iy ]

HBCO*(1-0)
I HCN (1-0)
| Ratio dependant on gas temperature,
- probes outer envelope.
] HNC (1-0) —
5 N,H* (1-0) Excellent dense gas tracer- probe of central core.

CH,OH (1-0) Temperature probe, abundance vs # maser spots.
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Hot Molecular Cores - Chemistry

DIFFERENCE IN INTENSITY RATIO KS PROB

[HCN/HNC] 0.30 12.8 |
INgH* /HNC] 04 15 DIFFERENCE IN INTENSITY RATIO KS PROB
[N,H*/HCN] 0.30 12.3 4
[Peo/N,H"] 051 o1 [CHSOH/N2H ] 0.32 12.8
[easmne] oz s [CH,0H/H'3C0*] 0.45 0.8
["3co/HCN] 0.25 29.4
[0 /NgH"] ] o517 [CH0H/HNC] 0.37 4.8
[H'"3co™ /HNC] I 0.18 71.9
[H'3co* /HCN] 024 368 [CH3OH/HCN] 0.32 12.8
[H"3co*/"3co] 0.47 0.3 +
[HCO* /] 017 732 [CH3OH/HCO ] 0.24 42.3
[HCO* /HNC] 0.26 24.2 [CH30H/13CO] _ 0.55 0.0
[HCO* /HCN] 0.28 16.3
[HCO™ /H'3co0 ] 0.23 412
No UCHII, CH3CN CH3CN
[HCO*/"3e0] 0.36 3.1 2 1
[CH,0H/NH*] 0.32 12.8 e S S P S S S R
[CH0H/H'3c0*] 0.45 0.8 —1 0 1
[CH;0H/HNC] 0.37 48 (Megn1 —Mea r|2) / S|gmoo”
[CH30H/HCN] 0.32 12.8
[CH;0H/HCO*] 0.24 42.3
[cH50H/"3co] 0.55 0.0
No UCHII, CH3CN 2

=1 0 1

(Mean,—Mean,) / Sigma,,
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Dissecting a star-forming region

'H-alpha' irﬁage .
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. o

" . Image credit: Johannes Schedler-
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Dissecting a star-forming region

s

& 13 .
. 2

Hil region-

~ 735" =0.7pcC

Image credit: Johannes 'Schedler. = | _
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Dissecting a star-forming region

A

'I—I-alpha'irh-age ? oL

. .
» 2

W Methano [
Figeredo et al 2002 ~ Masers

%
!
p =
4 ° Do
olu
- 3 g - 2 - . e
- e - . PR -
: 5 o . - i F R
r : i ; : ;
» " i O . '-'
S 5 e . E <y
4 A
. 3

.

| s Hil regiofr

~ 75" =0.7 pc

' Image credit: Johannes Schedler. = _

o]

-



soney  Case Study

Dissecting a star-forming region

'I—|-'alpha'im'age ol v

- 3 .'
e

' Sequential star formation?
--42 sources with. IR excess. 3
-‘NE-SW reddened colour gradlent
implies recent sequential SF |

" lonised gas: o}
- Peaked & confined in west L Flgeredo o al 2002 Masers [
- Electron temperature gradient _ — D

- Other tracers of star-formation:
& - Methanol Masers; Water Masers
-.CO band-head: (disks, winds?)

' e HiL regiofe

‘Image credit: Johannes 'Schedler.
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Dissecting a star-forming region
Hiil et al bbéerved ‘the region és part of a'large 12 5 SEST 12m antenna_i.' :
- mm continuum survey B
- Hill et al 2005, 2006

" Sensitive to cool dust & free-free emission
-

S

-

L [ .

L 3 B~

e

a o AN S & 75 = O.-7 pC |

Image credit: Johannes 'Schedler. -
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Dissecting a star-forming region
Hiil et al bbéerved ‘the region és part of a'large 12 5 SEST 12m antenna_i.' :
- mm continuum survey B
- Hill et al 2005, 2006

" Sensitive to cool dust & free-free emission
-

S

-

L [ .

L

~_§SIMBAbolometer. -

Image credit: Johannes 'Schedler. = | _
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Case Study

Dissecting a star-forming region

A =3-mm (85 - 115 GHz)
22-m dlsh = 1o beam

HCO*
CS

N,H*

.. diffuse gas

.. kinematics
.. Intermediate gas

.. dense gas

Compact Array:

Ammonia (NH,) ... thermometer

H,O masers ... kinematics

23 GHz continuum

- lonised gas

- Ultra-compact Hll regions
- Hyper-compact Hll regions
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Dissecting a star-forming region

—-61°1%'

() " n NH3LD)
Sla

._/L__/\__/\_/‘\___J\_. Sih
W St
Wmﬁww S3a
w s3b

bt e W e g3
b _A_AA./\____}\. S4a
__ 20 JM S4b

l ' ' -
NH3(1,1) ]
—18"

—-19'

Declination {(J2000)

[ - = _ ; rn S - A gsa
-z21- (O H75 + EW367 Arrays r1e x ” : i
f n 1 | ! L | L ! | ! L | L L i L 0 = S5b
11h12™15% 12™00" . 11746" 11730° —-50 —40 —-30 —20 —-10 0
White Contours = 1.2mm emission
Thick Black Contour = 23 GHz continuum
Beam FWHM ~ 10"

« NH, emission follows 1.2-mm (except in HII region)
 Resolves 'clumps’' (~0.5pc) into 'cores' (~0.1pc).
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Dissecting a star-forming region
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a
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X
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S

g
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(4]

£

-1 3

=

il B

=

1 L L | L = I | 1 |

. ! . . ] b s ¢ . . i
11212m15° 12™p0° 11®45° 11™3g* 55 0 5
Right Ascension (J2000) Offset from HIl region {arcminutes)
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spREy Case Study

Declination (J2000)

Dissecting a star-forming region

-61°17-

—-191

|
127p0*

Right Ascension (J2000)

11™45° 11730

| L
11212™15%

1Bz=0

1Mo

-5 0

Offset from HIl region {arcminutes)

 Temperature gradient away from the HIl region
e Hot spots in eastern arm + free-free emission
« Gas is being dispersed in east & heated in west

Rotational Temperature (K}

FWHM Linewidth (km.s™')
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Dissecting a star-forming region

- " . ,
C — 40
NGC 3576 |
18" |
30
=)
L [=] a
i [=]
19' F g i
§ g —B1°20000" - g
) = - 20
e 3 £
2 20 - 8
a / L
P—ArTeMiS i
I i 450 pm 10
21 | A .
oot | -61°25'00" -
-6122 | o
L 1 " 1 "
® 11*12™20° oo 10° 20°
b L . L . L . L . . L L . Right Ascension (J2000)
11P12™20° 10° 1270° 50° 40° 30° 20°
RA (J2000)

« FELLWALKER used to decompose emission into 'cores'
e 25 cores found, M = 5 — 500 solar masses
» Values corrected for abundance variations by
comparison to new 450 micron data from APEX (Andre
2008)
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Dissecting a star-forming region

3 T T
107 ¢ — i
Nee 3576 |1*°
CLASS 0
10° (Mgpy >> Ma) NGC_3576 . ]
] “ 30
g I
1 =1
'_'O 107 ¢ ] |
=] E g -61°2000" - ]
[ L = -1 20
| 1
= g 1
1E B
= 5 g _
CLASS I P—-ArTeMiS _. 10
-1 i 450 pm |
10 (Men\, < Ma) ? [ ]
s ; ; ; : : C T -61°26'00" |- o
10 0.2 M, 1My, 3Mg 8 ,1‘9 15 Mg 50 Mg 3 . . ) . . k |
L | I 1 PRI PR | 2 L " L L " 1 4 I i | it i 5 llhlzmgos UD. 401 20:
1 10 10 10 Right Ascension (J2000)

Lbol [LG)]

« FELLWALKER used to decompose emission into 'cores'
e 25 cores found, M= 5 — 500 solar masses
« Values corrected for abundance variations by
comparison to new 450 micron data from APEX (Andre
2008)
o Clump mass & luminosity suggest 8 — 50 M_ _ stars are

forming in each clump
 Weak evidence for an evolutionary gradient
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Dissecting a star-forming region

* Virial masses: s F -
My;; = kr AV? i j
o b .LI ! Lol ! M P
1 2 S 10 20 S0

Mcorrected/ Mviriul

 Find that all cores are at least gravitationally bound
« Magnetic support:
9 (1 B 10) GM?

B’- Bl = —
710 oOf ] R4n

e Find that fields of 1 - 40 mG required
 Higherthan ~1 — 6 mG typically measured in MSF

e Cores likely to be collapsing
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Dissecting a star-forming region
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Dissecting a star-forming region
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Mopra data
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Dissecting a star-forming region

#*

DEC (J2000)

20

Ot continuum
21 -

22 b

—g1723 - | : . | - . : -
11M12m30° 15°% 12M0° 45°
RA (J2000)
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#*

Dissecting a star-forming region

_16“' T
16 -
! -18
17
—-20
18 .
= <
S £ —e2
[AY] ‘ —
o199k
- ey
o —
= i 3]
a Lt < -24
20 F L
g Dust
L continuum
21 F —26
22 b —-28
—g1723 L - | : . | - . I AN
11M12M30° 15% 12Mmg® 458 0" 50" 100" 150"

RA (J2000) Angular Offset
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#*

Dissecting a star-forming region

16" | ]
17’
18

19

DEC (J2000)
Velocity (km/s)

20

Ot continuum
21 +

—g1729 . | ! . ! . . 1 .
11P12M30% 15°% 12™Mp° 45°%
RA (J2000) Angular Offset

« Classic velocity signature of an expanding shell
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#*

Dissecting a star-forming region

T

Velocity {km/s)

P e TR U L)
0" 50" 100" 150"
Angular Offset(arcsec)
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Dissecting a star-forming region

P e TR U L)
0" 50" 100" 150"
Angular Offset(arcsec)
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Dissecting a star-forming region

_g1°17" 3-colour column density map

I I
—_ —_
© Q@

Declination (J2000)
!
(4]
Q

NH; enhanced —

_oq clump

11P12™158 12™00° 11™45° 11™30°
Right Ascension (J2000)
« Green=CO Blue = CS Red = N_H"
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Declination (J2000)

Dissecting a star-forming region

—61°19'00"EE,
(iii)
—19'30" ] 0.40
1 8
020 g
—20'00" i ] ] b=
| ; % 810 ]
A B
& [ - 11 |
2F (”) 'M 0.00 ﬁ “
ol i . ] (ii)
—2080° | - Sr .
3
r 1k {020
o L —
o] 0.5( )
Blue — Red Peak Brightness (K 1 (iii)
T T T B 0
11811™45° 40° 35" 30°

Right Ascension (J2000) -40 -20 0
Velocity km s

« Evidence for bulk gas motions seen in line profiles (Park '96)
* Clump is dominated by significantly blue-skewed profiles
 Infalling gas motions
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3

Dissecting a star-forming region

| ' g ,“_\
:H-alpha
Image courtesy of 1 : ] ; E
' Joha?mes Sche?i’ler" Dllfsflhj’lse
' ' ; | Wind blown bubbles
—61°107}- . e o ] & -+ L [ R R ; 5
s . SR e / Cavity
O " .,\ i
5= - *l -~ Hll region i
g —15'L 4 * i : . : Ry T T e k1 ; _|
B .~ | Diffuse molecular
£ 1.2-mm dust| gas
%' emISSI_On : ::' . Explandling
- - molecular
8 R
Molecular cloud =
—207f+ —+
13
CO (1-0) - i _ ]
|| TEZamienn L e chato |
B B e i masers
| . 1 | . ! . . f . . | ! . | . . | ) . | . ! | L
11h13™m30°8 13™Q0° 12™30°% 12™00° 117307 13™00° 12™30° 12™00° 11™30°

Right Ascension (J2000)

« HlIl region expanding into a dense molecular cloud

« Heating and/or dispersing the immediate environment

« Very young massive star formation observed in dark clumps
« Cores collapsing while also showing evidence of outflows

« Some evidence of an age gradient - triggering?



THE UNIVERSITY OF

SYDNEY  Summary

 Molecular lines are an incredibly useful diagnostic of processes in the Galaxy

« With a few simple assumptions you can determine the physical and chemical
and kinematic conditions in star-formation regions

 For a more detailed description please see the notes.

Thanks for listening!
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