Studying Gas in our Galaxy at Different Wavelengths

The Sydney Institute for Astrophysics Cormac Purcell, Harley Wood Winter School, 2012-June-27

Talk Outline

- Why study molecular gas in the Galaxy?
- A little bit of theory
 - Spectra from rotating molecules
 - Radiation transport in the ISM
 - Getting physical parameters from observations
- Putting it all together real world examples

• Atomic & molecular gas forms 99% of the ISM by mass (1% dust)

THE UNIVERSITY OF SYDNEY

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2

Image: DRAO

Image: McClure-Griffiths

• CO a great proxy for H₂: BU-FCRAO Galactic Ring Survey (Jackson et al 2006)

the university of **SYDNEY**

THE UNIVERSITY OF SYDNEY

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2
- Molecular gas is a key part of the Galactic ecosystem

Figure: Andrew Walsh

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2
- Molecular gas is a key part of the Galactic ecosystem

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2
- Molecular gas is a key part of the Galactic ecosystem
- Emission (and absorption) lines act as probes of local physical conditions

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2
- Molecular gas is a key part of the Galactic ecosystem
- Emission (and absorption) lines act as probes of local physical conditions
- Relative chemical abundances change with time, forming chemical clocks

Molecules in the Interstellar Medium or Circumstellar Shells (as of 05/2012)

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms
H ₂	C ₃ *	c−C ₃ H	C ₅ *	C ₅ H	C ₆ H	CH ₃ C ₃ N	CH ₃ C ₄ H	CH ₃ C ₅ N	HC ₉ N	c-C ₆ H ₆ *	HC ₁₁ N
AIF	C ₂ H	<i>І</i> -С ₃ Н	C ₄ H	<i>I</i> -H ₂ C ₄	CH ₂ CHCN	HC(O)OCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	CH ₃ C ₆ H	C ₂ H ₅ OCH ₃ ?	C ₆₀ * 2012
AICI	C ₂ O	C ₃ N	C ₄ Si	C ₂ H ₄ *	CH ₃ C ₂ H	CH3COOH	(CH ₃) ₂ O	(CH ₂ OH) ₂	C ₂ H ₅ OCHO	n-C ₃ H ₇ CN	C ₇₀ *
C2**	C ₂ S	C ₃ O	<i>I</i> -C ₃ H ₂	CH ₃ CN	HC_5N	C ₇ H	CH_3CH_2OH	CH ₃ CH ₂ CHO			
СН	CH ₂	C ₃ S	c-C ₃ H ₂	CH ₃ NC	CH ₃ CHO	H ₂ C ₆	HC ₇ N				
CH ⁺	HCN	C ₂ H ₂ *	H ₂ CCN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C ₈ H				
CN	HCO	NH ₃	CH ₄ *	CH ₃ SH	c-C ₂ H ₄ O	<i>I</i> -HC ₆ H *	CH ₃ C(O)NH ₂				
со	HCO ⁺	HCCN	HC ₃ N	HC ₃ NH⁺	H ₂ CCHOH	CH ₂ CHCHO (?)	C ₈ H [−]				
CO ⁺	HCS⁺	HCNH ⁺	HC ₂ NC	HC ₂ CHO	C ₆ H [−]	CH ₂ CCHCN	C ₃ H ₆				
CP	HOC ⁺	HNCO	НСООН	NH ₂ CHO		H ₂ NCH ₂ CN					
SiC	H ₂ O	HNCS	H ₂ CNH	C ₅ N							
HCI	H ₂ S	HOCO ⁺	H ₂ C ₂ O	<i>I-</i> HC ₄ H *							
KCI	HNC	H ₂ CO	H ₂ NCN	<i>I</i> -HC ₄ N							
NH	HNO	H ₂ CN	HNC ₃	c-H ₂ C ₃ O							
NO	MgCN	H ₂ CS	SiH ₄ *	H ₂ CCNH (?)							
NS	MgNC	H ₃ O⁺	H ₂ COH⁺	$C_5 N^-$							
NaCl	N_2H^+	c-SiC ₃	C_4H^-								
ОН	N ₂ O	CH3 *	HC(O)CN								
PN	NaCN	C ₃ N [−]			httn		stro un	i kooln	dolodm	s/molo	culos
SO	OCS	PH ₃ ?			mip.	// vv vv vv.a	Suo.un			13/11016	CUICS
SO ⁺	SO2	HCNO									
SiN	c-SiCo	HOCN									

Molecules in the Interstellar Medium or Circumstellar Shells (as of 05/2012)

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12 atoms
SiO	CO ₂ *	HSCN									
SiS	NH ₂	H ₂ O ₂ 2011									
CS	H3 ⁺ *										
HF	H_2D^+ , HD_2^+										
HD	SiCN										
FeO?	AINC										
0 ₂	SiNC										
CF ⁺	HCP										
SiH?	CCP										
PO	AIOH										
AIO	H ₂ O ⁺										
OH ⁺	H ₂ Cl ⁺										
CN ⁻	KCN										
SH ⁺ 2011	FeCN 2011										
SH 2012	HO ₂ 2012										
HCI ⁺ 2012											

http://www.astro.uni-koeln.de/cdms/molecules

Molecules in the Interstellar Medium or Circumstellar Shells (as of 05/2012)

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	s 8 ato	ms 9a	atoms	10 atoms	11 atoms	12 ato	ms >12 atom
SiO	CO2*	HSCN										
SiS	NH ₂	H ₂ O ₂ 2011	Extr	agalactic N	Nolecule	s (as of (05/2012)					
CS	H3 ⁺ *				2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	>8 atoms
HF	H_2D^+ , HD_2^+			C	ЭН	H ₂ O	H ₂ CO	c-C ₃ H ₂	CH ₃ OH	CH ₃ CCH	HC ₆ H	c-C ₆ H ₆ *
HD	SICN			C	00	HCN	NH ₃	HC ₃ N	CH ₃ CN	CH ₃ NH ₃ 2011		C ₆₀ * *? 2012
0 ₂	SiNC			F	ł ₂ *	HCO ⁺	HNCO	CH ₂ NH	HC ₄ H*	СН ₃ СНО 2011		
CF ⁺	HCP			C	CH **	C ₂ H	C ₂ H ₂ *	NH ₂ CN				
SiH ? PO	CCP AIOH			C	S	HNC	H ₂ CS?	/-C ₃ H ₂ 2011				
AIO	H ₂ O ⁺			c	CH+ **	N_2H^+	HOCO ⁺	H ₂ CCN 2011				
OH ⁺	H ₂ Cl ⁺			C	2N	OCS	c-C ₃ H	H ₂ CCO 2011				
CN [−] SH ⁺	KCN FeCN			s	30	НСО	H ₃ O⁺	C ₄ H 2011				
2011 SH	2011 HOo			S	SiO	H ₂ S	<i>I</i> -С ₃ Н 2011					
2012	2012			C	CO ⁺	SO ₂						
HCI ⁺				Ν	10	HOC ⁺						
2012				Ν	IS	C ₂ S						
				Ν	1H	H ₂ O ⁺						
				C	CH⁺							
				F	łF							
				S 2	50 ⁺ 2011							

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2
- Molecular gas is a key part of the Galactic ecosystem
- Emission (and absorption) lines act as probes of local physical conditions
- Relative chemical abundances change with time, forming chemical clocks

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2
- Molecular gas is a key part of the Galactic ecosystem
- Emission (and absorption) lines act as probes of local physical conditions
- Relative chemical abundances change with time, forming chemical clocks
- The velocities of Doppler shifted gas can reveal dynamic processes (accretion, outflows), the large scale structure of the Galaxy (spiral arms)

Image: NASA

THE UNIVERSITY OF

Image: B. Koribalski

Dame et al 2001

Dame et al 2001

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2
- Molecular gas is a key part of the Galactic ecosystem
- Emission (and absorption) lines act as probes of local physical conditions
- Relative chemical abundances change with time, forming chemical clocks
- The velocities of Doppler shifted gas can reveal dynamic processes (accretion, outflows), the large scale structure of the Galaxy (spiral arms)

- Atomic & molecular gas forms 99% of the ISM by mass (1% dust)
- About half of this is HI and half H_2
- Molecular gas is a key part of the Galactic ecosystem
- Emission (and absorption) lines act as probes of local physical conditions
- Relative chemical abundances change with time, forming chemical clocks
- The velocities of Doppler shifted gas can reveal dynamic processes (accretion, outflows), the large scale structure of the Galaxy (spiral arms)
- Molecular gas is beautiful!

GRS 13 CO (1-0) intensity integrated from 50 to 70 km s⁻¹, far

THE UNIVERSITY OF

GRS 13 CO (1–0) intensity integrated from 25 to 30 km s⁻¹, near

GRS 13 CO (1-0) intensity integrated from 50 to 70 km s⁻¹ for

A little bit of Theory Emission from molecules

- Molecular transitions fall into three energy bins:
 - Electronic: $\Delta E \approx a$ few eV, visible or UV emission lines
 - Vibrational (nuclear vibrations): $\Delta E \approx 10^{-1}$ to 10^{-2} eV, infrared lines
 - Rotational: $\Delta E \approx 10^{-1} \text{ eV}$, radio emission lines (cm to mm wavelengths)

A little bit of Theory Emission from molecules

Image: NASA/IPAC

- Molecular transitions fall into three energy bins:
 - Electronic: $\Delta E \approx a$ few eV, visible or UV emission lines
 - Vibrational (nuclear vibrations): $\Delta E \approx 10^{-1}$ to 10^{-2} eV, infrared lines
 - Rotational: $\Delta E \approx 10^{-1} \text{ eV}$, radio emission lines (cm to mm wavelengths)
- This talk describes only **rotational lines at radio wavelengths**

- Molecular transitions fall into three energy bins:
 - Electronic: $\Delta E \approx a$ few eV, visible or UV emission lines
 - Vibrational (nuclear vibrations): $\Delta E \approx 10^{-1}$ to 10^{-2} eV, infrared lines
 - Rotational: $\Delta E \approx 10^{-1} \text{ eV}$, radio emission lines (cm to mm wavelengths)
- This talk describes only **rotational lines at radio wavelengths**
- Classical picture of rotation:
 - Moment of inertia I around axis i $I = \sum m_i r_i^2,$

- Molecular transitions fall into three energy bins:
 - Electronic: $\Delta E \approx a$ few eV, visible or UV emission lines
 - Vibrational (nuclear vibrations): $\Delta E \approx 10^{-1}$ to 10^{-2} eV, infrared lines
 - Rotational: $\Delta E \approx 10^{-1} \text{ eV}$, radio emission lines (cm to mm wavelengths)
- This talk describes only rotational lines at radio wavelengths
- Classical picture of rotation:
 - Moment of inertia I around axis i $I = \sum m_i \, r_i^2, \label{eq:I}$
 - Kinetic energy

$$E = \frac{1}{2} \left[I_{a} \omega_{a}^{2} + I_{b} \omega_{b}^{2} + I_{c} \omega_{c}^{2} \right],$$

- Molecular transitions fall into three energy bins:
 - Electronic: $\Delta E \approx a$ few eV, visible or UV emission lines
 - Vibrational (nuclear vibrations): $\Delta E \approx 10^{-1}$ to 10^{-2} eV, infrared lines
 - Rotational: $\Delta E \approx 10^{-1} \text{ eV}$, radio emission lines (cm to mm wavelengths)
- This talk describes only rotational lines at radio wavelengths
- Classical picture of rotation:
 - Moment of inertia I around axis i $I = \sum m_i \, r_i^2, \label{eq:I}$
 - Kinetic energy

$$E = \frac{1}{2} \left[I_{a} \omega_{a}^{2} + I_{b} \omega_{b}^{2} + I_{c} \omega_{c}^{2} \right],$$

- In terms of angular mometum $P_{a}=I_{a}\,\omega_{a}$:

$$E = \frac{P_a^2}{2I_a} + \frac{P_b^2}{2I_b} + \frac{P_c^2}{2I_c},$$

Four types of rotor configuration, grouped by symmetry: •

Spherical Rotors: $I_a = I_b = I_c$, e.g., CH_4 , SiH_4 . Linear Rotors: Asymmetric Rotors: $I_a \neq I_b \neq I_c$, e.g., H_2O , CH_3OH .

 $I_a = 0, I_b = I_c, \quad e.g., CO, HCO+, HCN, HNC, N_2H^+$ Symmetric Rotors: $I_a = I_b \neq I_c$, e.g., NH₃, CH₃CN, CH₃Cl.

• Four types of rotor configuration, grouped by symmetry:

Spherical Rotors: Linear Rotors: Symmetric Rotors: Asymmetric Rotors:

$I_a = I_b = I_c,$
$I_{\rm a}=0, I_{\rm b}=I_{\rm c},$
$I_{\rm a}=I_{\rm b}\neq I_{\rm c},$
$I_{\rm a} \neq I_{\rm b} \neq I_{\rm c},$

e.g., CH_4 , SiH_4 . e.g., CO, HCO+, HCN, HNC, N_2H^+ e.g., NH_3 , CH_3CN , CH_3Cl . e.g., H_2O , CH_3OH .

• Four types of rotor configuration, grouped by symmetry:

Spherical Rotors: Linear Rotors: Symmetric Rotors: Asymmetric Rotors:

$I_a = I_b = I_c,$
$I_{\rm a}=0, I_{\rm b}=I_{\rm c},$
$I_{\rm a}=I_{\rm b}\neq I_{\rm c},$
$I_{\rm a} \neq I_{\rm b} \neq I_{\rm c},$

e.g., CH_4 , SiH_4 . e.g., CO, HCO+, HCN, HNC, N_2H^+ e.g., NH_3 , CH_3CN , CH_3Cl . e.g., H_2O , CH_3OH .

Four types of rotor configuration, grouped by symmetry: ٠

Spherical Rotors: $I_a = I_b = I_c$, e.g., CH_4 , SiH_4 . Linear Rotors: Asymmetric Rotors: $I_a \neq I_b \neq I_c$, e.g., H_2O , CH_3OH .

 $I_a = 0, I_b = I_c, \quad e.g., CO, HCO+, HCN, HNC, N_2H^+$ Symmetric Rotors: $I_a = I_b \neq I_c$, e.g., NH₃, CH₃CN, CH₃Cl.

Four types of rotor configuration, grouped by symmetry: ٠

Spherical Rotors: $I_a = I_b = I_c$, e.g., CH_4 , SiH_4 . Linear Rotors: Asymmetric Rotors: $I_a \neq I_b \neq I_c$, e.g., H_2O , CH_3OH .

 $I_a = 0, I_b = I_c, \quad e.g., CO, HCO+, HCN, HNC, N_2H^+$ Symmetric Rotors: $I_a = I_b \neq I_c$, e.g., NH₃, CH₃CN, CH₃Cl.

Four types of rotor configuration, grouped by symmetry:

Spherical Rotors: $I_a = I_b = I_c$, e.g., CH_4 , SiH_4 . Linear Rotors: Asymmetric Rotors: $I_a \neq I_b \neq I_c$, e.g., H_2O , CH_3OH .

- $I_a = 0, I_b = I_c, \quad e.g., CO, HCO+, HCN, HNC, N_2H^+$ Symmetric Rotors: $I_a = I_b \neq I_c$, e.g., NH₃, CH₃CN, CH₃Cl.
 - For simplicity consider only symmetric rotors: • one unique and two identical axes

Four types of rotor configuration, grouped by symmetry:

Spherical Rotors: $I_a = I_b = I_c$, e.g., CH_4 , SiH_4 . Linear Rotors: Asymmetric Rotors: $I_a \neq I_b \neq I_c$, e.g., H_2O , CH_3OH .

- $I_a = 0, I_b = I_c, \quad e.g., CO, HCO+, HCN, HNC, N_2H^+$ Symmetric Rotors: $I_a = I_b \neq I_c$, e.g., NH₃, CH₃CN, CH₃Cl.
 - For simplicity consider only symmetric rotors: • one unique and two identical axes

To emit radiation the molecule must have a permanent dipole moment μ , arising from the asymmetric distribution of +ve and –ve charges on the molecule.

Four types of rotor configuration, grouped by symmetry:

Spherical Rotors: $I_a = I_b = I_c$, e.g., CH_4 , SiH_4 . Linear Rotors: Asymmetric Rotors: $I_a \neq I_b \neq I_c$, e.g., H_2O , CH_3OH .

- $I_a = 0, I_b = I_c, \quad e.g., CO, HCO+, HCN, HNC, N_2H^+$ Symmetric Rotors: $I_a = I_b \neq I_c$, e.g., NH₃, CH₃CN, CH₃Cl.
 - For simplicity consider only symmetric rotors: • one unique and two identical axes

- To emit radiation the molecule must have a permanent dipole moment μ , arising from the asymmetric distribution of +ve and –ve charges on the molecule.
- H_2 , the most abundant molecule, has a low μ and so can not usually emit •
- CO is used as proxy assuming a constant ratio $[CO/H_2] = 10^{-4}$

• Energy levels in a classical **rigid** symmetric rotor given by:

$$E = \frac{P^2}{2I_\perp} - \frac{P_c^2}{2I_\perp} + \frac{P_c^2}{2I_\parallel} = \frac{P^2}{2I_\perp} + \left(\frac{1}{2I_\parallel} - \frac{1}{2I_\perp}\right) P_c^2$$

• Energy levels in a classical **rigid** symmetric rotor given by:

$$\mathbf{E} = \frac{\mathbf{P}^2}{2\mathbf{I}_{\perp}} - \frac{\mathbf{P}_{\mathrm{c}}^2}{2\mathbf{I}_{\perp}} + \frac{\mathbf{P}_{\mathrm{c}}^2}{2\mathbf{I}_{\parallel}} = \frac{\mathbf{P}^2}{2\mathbf{I}_{\perp}} + \left(\frac{1}{2\mathbf{I}_{\parallel}} - \frac{1}{2\mathbf{I}_{\perp}}\right) \mathbf{P}_{\mathrm{c}}^2$$

• Quantised expression can be obtained from the correspondence principal by substituting the angular momentum operator $J^2 \to J(J+1)\hbar^2$ for P. $\hbar = h/2\pi$

• Energy levels in a classical **rigid** symmetric rotor given by:

$$\mathbf{E} = \frac{\mathbf{P}^2}{2\mathbf{I}_{\perp}} - \frac{\mathbf{P}_{\mathrm{c}}^2}{2\mathbf{I}_{\perp}} + \frac{\mathbf{P}_{\mathrm{c}}^2}{2\mathbf{I}_{\parallel}} = \frac{\mathbf{P}^2}{2\mathbf{I}_{\perp}} + \left(\frac{1}{2\mathbf{I}_{\parallel}} - \frac{1}{2\mathbf{I}_{\perp}}\right) \mathbf{P}_{\mathrm{c}}^2$$

- Quantised expression can be obtained from the correspondence principal by substituting the angular momentum operator $J^2 \to J(J+1)\hbar^2$ for P. $\hbar = h/2\pi$
- The molecule rotates around the principal axis Z with angular momentum P_z. The Z axis precesses around the total angular momentum P
- The projection of the total angular momentum on to the principal axis is restricted to values of Kħ, with K=±0, ±1, ...

Energy levels in a classical **rigid** symmetric rotor given by: •

$$\mathbf{E} = \frac{\mathbf{P}^2}{2\mathbf{I}_{\perp}} - \frac{\mathbf{P}_{\mathrm{c}}^2}{2\mathbf{I}_{\perp}} + \frac{\mathbf{P}_{\mathrm{c}}^2}{2\mathbf{I}_{\parallel}} = \frac{\mathbf{P}^2}{2\mathbf{I}_{\perp}} + \left(\frac{1}{2\mathbf{I}_{\parallel}} - \frac{1}{2\mathbf{I}_{\perp}}\right) \mathbf{P}_{\mathrm{c}}^2$$

- Quantised expression can be obtained from the correspondence principal by • substituting the angular momentum operator $J^2 \rightarrow J(J+1)\hbar^2$ for P $\hbar = h/2\pi$
- The molecule rotates around the principal axis Z with angular momentum P_7 . The Z axis precesses around the total angular momentum P
- The projection of the total angular ulletmomentum on to the principal axis is restricted to values of $K\hbar$, with $K=\pm 0, \pm 1, \ldots$
- Energy levels given by: • Z $E_{J,K} = hBJ(J+1) + h(A-B)K^2$ with $A = \frac{\hbar}{4\pi I_{\parallel}}$ and $B = \frac{\hbar}{4\pi I_{\perp}}$ being the rotational constants of the molecule

P-

- For a simple rigid rotor the frequencies in a ΔJ +/- 1 transition are given by:
 - $\nu = 2B(J+1)$... at least to first order, as A-B is small.

• For a simple rigid rotor the frequencies in a $\Delta J + - 1$ transition are given by:

 $\nu = 2B(J+1)$... at least to first order

From Gordy & Cook 1970

- Molecules are not rigid rotors, but are affected by centripetal distortion
- Bonds lengthen, leading to a change in I and B.

- Molecules are not rigid rotors, but are affected by centripetal distortion
- Bonds lengthen, leading to a change in I and B.
- Energy levels modified by an empirical distortion term D

- Molecules are not rigid rotors, but are affected by centripetal distortion
- Bonds lengthen, leading to a change in I and B.
- Energy levels modified by an empirical distortion term D
- $\bullet \quad E_{J,K} = h[BJ(J+1) + (A-B)K^2 D_JJ^2(J+1)^2 D_{JK}J(J+1)K^2 D_KK^4].$

- Molecules are not rigid rotors, but are affected by centripetal distortion
- Bonds lengthen, leading to a change in I and B.
- Energy levels modified by an empirical distortion term D
- $\bullet \quad E_{J,K} = h[BJ(J+1) + (A-B)K^2 D_JJ^2(J+1)^2 D_{JK}J(J+1)K^2 D_KK^4].$
- The frequency of a rotational transition $J \rightarrow J+1, \Delta K \!=\! 0$ is then:

 $\nu = 2(J+1)(B-D_{JK}K^2) - 4D_J(J+1)^3 \quad \dots$ now dependant on K

- Molecules are not rigid rotors, but are affected by centripetal distortion
- Bonds lengthen, leading to a change in I and B.
- Energy levels modified by an empirical distortion term D
- $\bullet \quad E_{J,K} = h[BJ(J+1) + (A-B)K^2 D_JJ^2(J+1)^2 D_{JK}J(J+1)K^2 D_KK^4].$
- The frequency of a rotational transition $J \rightarrow J+1, \Delta K \!=\! 0$ is then:

$$u = 2(J+1)(B - D_{JK}K^2) - 4D_J(J+1)^3 \quad \dots \text{ now dependant on K}$$

- Degenerate (overlapping) energy levels
- Energy of any J-level is degenerate by a factor $g_u = 2J + 1$

- Degenerate (overlapping) energy levels
- Energy of any J-level is degenerate by a factor $g_u = 2J + 1$
- For symmetric tops, $E_{-K} = E_{+K}$ so K-levels (>0) are doubly degenerate

- Degenerate (overlapping) energy levels
- Energy of any J-level is degenerate by a factor $g_u = 2J + 1$
- For symmetric tops, $E_{-K} = E_{+K}$ so K-levels (>0) are doubly degenerate
- Symmetric tops with three-fold symmetry (e.g., CH₃CN, NH₃) also have degeneracy due to quantum mechanical symmetry considerations associated with spins on the three identical atoms:

$$S(I, K) = 2(4I^2 + 4I + 3)$$
 For $K = 3n, n = 1, 2, ...$
 $S(I, K) = (4I^2 + 4I + 3)$ For $K = 0$
 $S(I, K) = 2(4I^2 + 4I)$ For $K = 0$

$$S(I, K) = 2(4I^2 + 4I)$$
 For $K \neq 3n, n = 1, 2, ...$

- Degenerate (overlapping) energy levels
- Energy of any J-level is degenerate by a factor $g_u = 2J + 1$
- For symmetric tops, $E_{-K} = E_{+K}$ so K-levels (>0) are doubly degenerate
- Symmetric tops with three-fold symmetry (e.g., CH₃CN, NH₃) also have degeneracy due to quantum mechanical symmetry considerations associated with spins on the three identical atoms:

$$S(I, K) = 2(4I^2 + 4I + 3)$$
 For $K = 3n, n = 1, 2, ...$
 $S(I, K) = (4I^2 + 4I + 3)$ For $K = 0$

$$S(I, K) = 2(4I^2 + 4I)$$
 For $K \neq 3n, n = 1, 2, ...$

• Total degeneracy of any J,K level is then: ${
m ~g_u}~S({
m I},{
m K})$

From Loren & Mundy 1984

From Loren & Mundy 1984

• In a population the number of molecules at a particular rotational energy will be governed by the Boltzmann Distribution:

$$\frac{n_{\rm J}}{n_0} = \frac{g_{\rm J}}{g_0} \, e^{-(E_{\rm J} - E_0)/kT_{\rm ex}}$$

• In a population the number of molecules at a particular rotational energy will be governed by the Boltzmann Distribution:

$$\frac{n_{\rm J}}{n_0} = \frac{g_{\rm J}}{g_0} \, e^{-(E_{\rm J} - E_0)/kT_{\rm ex}}$$

• In a population the number of molecules at a particular rotational energy will be governed by the Boltzmann Distribution:

$$\frac{n_{\rm J}}{n_0} = \frac{g_{\rm J}}{g_0} \, {\rm e}^{-(E_{\rm J} - E_0)/kT_{\rm ex}}$$

• In a population the number of molecules at a particular rotational energy will be governed by the Boltzmann Distribution:

$$\frac{n_J}{n_0} = \frac{g_J}{g_0} e^{-(E_J - E_0)/kT_{ex}}$$

• In a population the number of molecules at a particular rotational energy will be governed by the Boltzmann Distribution:

$$\frac{n_J}{n_0} = \frac{g_J}{g_0} e^{-(E_J - E_0)/kT_{ex}}$$

• In a population the number of molecules at a particular rotational energy will be governed by the Boltzmann Distribution:

$$\frac{n_J}{n_0} = \frac{g_J}{g_0} e^{-(E_J - E_0)/kT_{ex}}$$

$$n = \sum_{i=0}^{\infty} n_i = n_0 \sum_{i=0}^{\infty} \frac{n_i}{n_0}$$

$$n = \sum_{i=0}^{\infty} n_i = n_0 \sum_{i=0}^{\infty} \frac{n_i}{n_0} = n_0 \sum_{i=0}^{\infty} \frac{g_i}{g_0} e^{-E_i/kT} = \frac{n_0}{g_0} e^{E_0/kT} Q(T)$$

$$\begin{split} n &= \sum_{i=0}^\infty n_i \ = n_0 \sum_{i=0}^\infty \frac{n_i}{n_0} = n_0 \sum_{i=0}^\infty \frac{g_i}{g_0} \, e^{-E_i/kT} = \frac{n_0}{g_0} \, e^{E_0/kT} Q(T) \\ \text{with Q(T_{\text{ex}}) being the partition function} \quad Q(T_{\text{ex}}) = \sum_i g_i \, e^{-E_i/kT_{\text{ex}}} \end{split}$$

- The bigger the molecule, the larger the partition function
- At any given temperature the molecules can be distributed over a larger number of available energy levels

Slide – John Storey

$$\begin{split} n &= \sum_{i=0}^\infty n_i \ = n_0 \sum_{i=0}^\infty \frac{n_i}{n_0} = n_0 \sum_{i=0}^\infty \frac{g_i}{g_0} \, e^{-E_i/kT} = \frac{n_0}{g_0} \, e^{E_0/kT} Q(T) \\ \text{with Q(T_{\text{ex}}) being the partition function} \quad Q(T_{\text{ex}}) = \sum_i g_i \, e^{-E_i/kT_{\text{ex}}} \end{split}$$

• The total number density of molecules can be inferred from:

$$\begin{split} n &= \sum_{i=0}^\infty n_i \ = n_0 \sum_{i=0}^\infty \frac{n_i}{n_0} = n_0 \sum_{i=0}^\infty \frac{g_i}{g_0} \, e^{-E_i/kT} = \frac{n_0}{g_0} \, e^{E_0/kT} Q(T) \\ \text{with Q(T_{\text{ex}}) being the partition function} \quad Q(T_{\text{ex}}) = \sum_i g_i \, e^{-E_i/kT_{\text{ex}}} \end{split}$$

• Total intensity in a rotational transition:

Intensity
$$\propto \frac{|\mu^2| n g_u S(I, K) e^{-(E_u - E_l)/kT_{ex}}}{Q(T_{ex})}$$

• The total number density of molecules can be inferred from:

$$\begin{split} n &= \sum_{i=0}^\infty n_i \ = n_0 \sum_{i=0}^\infty \frac{n_i}{n_0} = n_0 \sum_{i=0}^\infty \frac{g_i}{g_0} \, e^{-E_i/kT} = \frac{n_0}{g_0} \, e^{E_0/kT} Q(T) \\ \text{with Q(T_{\text{ex}}) being the partition function} \quad Q(T_{\text{ex}}) = \sum_i g_i \, e^{-E_i/kT_{\text{ex}}} \end{split}$$

• Total intensity in a rotational transition:

Intensity
$$\propto \frac{|\mu^2| \operatorname{ng}_{u} S(I, K) e^{-(E_u - E_l)/kT_{ex}}}{Q(T_{ex})}$$

Dipole Number moment density

• The total number density of molecules can be inferred from:

$$\begin{split} n &= \sum_{i=0}^\infty n_i \ = n_0 \sum_{i=0}^\infty \frac{n_i}{n_0} = n_0 \sum_{i=0}^\infty \frac{g_i}{g_0} \, e^{-E_i/kT} = \frac{n_0}{g_0} \, e^{E_0/kT} Q(T) \\ \text{with Q(T_{\text{ex}}) being the partition function} \quad Q(T_{\text{ex}}) = \sum_i g_i \, e^{-E_i/kT_{\text{ex}}} \end{split}$$

• Total intensity in a rotational transition:

$$\label{eq:Intensity} {\rm Intensity} \propto \frac{|\mu^2|\, n\, g_u\, S({\rm I,K}) e^{-({\rm E_u-E_l})/kT_{\rm ex}}}{{\rm Q}({\rm T_{ex}})}$$

• Full formula requires consideration of radiation transport

• The total number density of molecules can be inferred from:

$$\begin{split} n &= \sum_{i=0}^\infty n_i \ = n_0 \sum_{i=0}^\infty \frac{n_i}{n_0} = n_0 \sum_{i=0}^\infty \frac{g_i}{g_0} \, e^{-E_i/kT} = \frac{n_0}{g_0} \, e^{E_0/kT} Q(T) \\ \text{with Q(T_{\text{ex}}) being the partition function} \quad Q(T_{\text{ex}}) = \sum_i g_i \, e^{-E_i/kT_{\text{ex}}} \end{split}$$

• Total intensity in a rotational transition:

A little bit of Theory Ensembles of rotating molecules

• The total number density of molecules can be inferred from:

$$\begin{split} n &= \sum_{i=0}^\infty n_i \ = n_0 \sum_{i=0}^\infty \frac{n_i}{n_0} = n_0 \sum_{i=0}^\infty \frac{g_i}{g_0} \, e^{-E_i/kT} = \frac{n_0}{g_0} \, e^{E_0/kT} Q(T) \\ \text{with Q(T_{\text{ex}}) being the partition function} \quad Q(T_{\text{ex}}) = \sum_i g_i \, e^{-E_i/kT_{\text{ex}}} \end{split}$$

• Total intensity in a rotational transition:

$$\label{eq:Intensity} {\rm Intensity} \propto \frac{|\mu^2| \, {\rm n} \, {\rm g}_{\rm u} \, S({\rm I},{\rm K}) \, {\rm e}^{-({\rm E}_{\rm u}-{\rm E}_{\rm l})/k{\rm T}_{\rm ex}}}{{\rm Q}({\rm T}_{\rm ex})}$$

Dipole	Number	Degeneracy	Partition	Transition
moment	density		function	energy

A little bit of Theory Ensembles of rotating molecules

• The total number density of molecules can be inferred from:

$$\begin{split} n &= \sum_{i=0}^\infty n_i \ = n_0 \sum_{i=0}^\infty \frac{n_i}{n_0} = n_0 \sum_{i=0}^\infty \frac{g_i}{g_0} \, e^{-E_i/kT} = \frac{n_0}{g_0} \, e^{E_0/kT} Q(T) \\ \text{with Q(T_{\text{ex}}) being the partition function} \quad Q(T_{\text{ex}}) = \sum_i g_i \, e^{-E_i/kT_{\text{ex}}} \end{split}$$

• Total intensity in a rotational transition:

$$\label{eq:Intensity} {\rm Intensity} \propto \frac{|\mu^2| \, {\rm n} \, {\rm g}_{\rm u} \, S({\rm I},{\rm K}) \, {\rm e}^{-({\rm E}_{\rm u}-{\rm E}_{\rm l})/k{\rm T}_{\rm ex}}}{{\rm Q}({\rm T}_{\rm ex})}$$

A little bit of Theory Ensembles of rotating molecules

• The total number density of molecules can be inferred from:

$$\begin{split} n &= \sum_{i=0}^\infty n_i \ = n_0 \sum_{i=0}^\infty \frac{n_i}{n_0} = n_0 \sum_{i=0}^\infty \frac{g_i}{g_0} \, e^{-E_i/kT} = \frac{n_0}{g_0} \, e^{E_0/kT} Q(T) \\ \text{with Q(T_{\text{ex}}) being the partition function} \quad Q(T_{\text{ex}}) = \sum_i g_i \, e^{-E_i/kT_{\text{ex}}} \end{split}$$

• Total intensity in a rotational transition:

$$\label{eq:Intensity} {\rm Intensity} \propto \frac{|\mu^2| \, {\rm n} \, {\rm g}_{\rm u} \, S({\rm I},{\rm K}) \, {\rm e}^{-({\rm E}_{\rm u}-{\rm E}_{\rm l})/k{\rm T}_{\rm ex}}}{{\rm Q}({\rm T}_{\rm ex})}$$

• Full formula requires consideration of radiation transport

• Gaussian line profiles often assumed for spectral lines

$$\phi(\nu) = \frac{\sqrt{4 \ln 2}}{\Delta \nu \sqrt{\pi}} e^{-4 \ln 2 \left(\frac{\nu}{\Delta \nu}\right)^2}$$

• Gaussian line profiles often assumed for spectral lines

$$\phi(\nu) = \frac{\sqrt{4 \ln 2}}{\Delta \nu \sqrt{\pi}} e^{-4 \ln 2 \left(\frac{\nu}{\Delta \nu}\right)^2}$$

• Proximity of other molecules affects the radiation emitted:

Gaussian line profiles often assumed for spectral lines ٠

$$\phi(\nu) = \frac{\sqrt{4 \ln 2}}{\Delta \nu \sqrt{\pi}} e^{-4 \ln 2 \left(\frac{\nu}{\Delta \nu}\right)^2}$$

 \mathbf{c}

m

Proximity of other molecules affects the radiation emitted: • Thermal Doppler broadening:

$$\Delta \nu_{\rm FWHM} = 2 \sqrt{\ln(2)} \ \frac{\nu_0}{c} \sqrt{\frac{2kT_{\rm kin}}{m}}$$

• Gaussian line profiles often assumed for spectral lines

$$\phi(\nu) = \frac{\sqrt{4 \ln 2}}{\Delta \nu \sqrt{\pi}} e^{-4 \ln 2 \left(\frac{\nu}{\Delta \nu}\right)^2}$$

Proximity of other molecules affects the radiation emitted:
Thermal Doppler broadening:

$$\Delta \nu_{\rm \tiny FWHM} = 2 \sqrt{\ln(2)} \ \frac{\nu_0}{c} \sqrt{\frac{2kT_{\rm kin}}{m}}$$

Turbulent Doppler broadening:

$$\Delta \nu_{\rm \tiny FWHM} = 2 \sqrt{\ln(2)} \; \frac{\nu_0}{c} \sqrt{\frac{2kT_{\rm kin}}{m} + V_t^2} \label{eq:phi_function}$$

- Consider an ensemble of molecules with 2 energy levels Eu and El
- Bathed in a radiation field of specific intensity ${\rm I}_{\nu}$

- Consider an ensemble of molecules with 2 energy levels Eu and El
- Bathed in a radiation field of specific intensity ${\rm I}_{\nu}$
- Einstein coefficients describe the **radiative** transitions between levels:

- Consider an ensemble of molecules with 2 energy levels Eu and El
- Bathed in a radiation field of specific intensity ${\rm I}_{\nu}$
- Einstein coefficients describe the **radiative** transitions between levels:

 $A_{ul} = Probability of spontaneous radiative decay from the upper to the lower energy level (s⁻¹).$

- Consider an ensemble of molecules with 2 energy levels Eu and El
- Bathed in a radiation field of specific intensity ${\rm I}_{\nu}$
- Einstein coefficients describe the **radiative** transitions between levels:

- $A_{ul} = Probability of spontaneous radiative decay from the upper to the lower energy level (s⁻¹).$
- $\overline{I}B_{ul}$ = Probability of stimulated emission from the upper to the lower energy level.

- Consider an ensemble of molecules with 2 energy levels Eu and El
- Bathed in a radiation field of specific intensity ${\rm I}_{\nu}$
- Einstein coefficients describe the radiative transitions between levels:

 $A_{ul} = Probability of spontaneous radiative decay from the upper to the lower energy level (s⁻¹).$

 $\overline{I}B_{ul}$ = Probability of stimulated emission from the upper to the lower energy level.

 $\bar{I}\,B_{lu}=Probability$ of photon absorption leading to a transition from the lower to upper energy level.

- Consider an ensemble of molecules with 2 energy levels Eu and El
- Bathed in a radiation field of specific intensity ${\rm I}_{\nu}$
- Einstein coefficients describe the **radiative** transitions between levels:

 $A_{ul} = Probability of spontaneous radiative decay from the upper to the lower energy level (s⁻¹).$

 $\overline{I}B_{ul}$ = Probability of stimulated emission from the upper to the lower energy level.

 $\bar{I}\,B_{lu}=$ Probability of photon absorption leading to a transition from the lower to upper energy level.

• Intrinsic properties of the transition and molecule:

$$A_{ul} = \frac{16 \pi^3 \nu^3}{3 \epsilon_0 h c^3} |\mu^2| \qquad B_{ul} = \frac{c^2}{2h\nu^3} A_{ul} \qquad B_{lu} g_l = B_{ul} g_u$$

- Consider an ensemble of molecules with 2 energy levels Eu and El
- Bathed in a radiation field of specific intensity ${\rm I}_{\nu}$
- Einstein coefficients describe the **radiative** transitions between levels:

 $A_{ul} = Probability of spontaneous radiative decay from the upper to the lower energy level (s⁻¹).$

 $\overline{I}B_{ul}$ = Probability of stimulated emission from the upper to the lower energy level.

 $\overline{I}B_{lu}$ = Probability of photon absorption leading to a transition from the lower to upper energy level.

• Intrinsic properties of the transition and molecule:

$$A_{ul} = \frac{16 \pi^3 \nu^3}{3 \epsilon_0 h c^3} |\mu^2| \qquad B_{ul} = \frac{c^2}{2h\nu^3} A_{ul} \qquad B_{lu} g_l = B_{ul} g_u$$

• Collisions with H_2 also excite and de-excite levels: $C_{lu} = n_{H_2} \gamma_{lu} = Rate$ of collision induced transitions from lower to upper level

 $C_{ul} = n_{H_2} \gamma_{ul} = Rate$ of collision induced transitions from upper to lower level

$$n_{\mathrm{u}}\left[A_{\mathrm{ul}}+B_{\mathrm{ul}}\,\bar{I}_{\nu}+C_{\mathrm{ul}}\right]=n_{\mathrm{l}}\left[B_{\mathrm{lu}}\,\bar{I}_{\nu}+C_{\mathrm{lu}}\right]$$

$$n_{\mathrm{u}}\left[A_{\mathrm{ul}} + B_{\mathrm{ul}}\,\bar{I}_{\nu} + C_{\mathrm{ul}}\right] = n_{\mathrm{l}}\left[B_{\mathrm{lu}}\,\bar{I}_{\nu} + C_{\mathrm{lu}}\right]$$

• Assuming LTE conditions the Boltzmann distribution governs each

$$\frac{n_{\rm u}}{n_{\rm l}} = \frac{g_{\rm u}}{g_{\rm l}} \, {\rm e}^{-(E_{\rm u}-E_{\rm l})/k\,T_{\rm ex}} \qquad \qquad \frac{C_{\rm \,lu}}{C_{\rm \,ul}} = \frac{g_{\rm u}}{g_{\rm l}} \, {\rm e}^{-(E_{\rm u}-E_{\rm l})/k\,T_{\rm kin}}$$

$$n_u \left[A_{ul} + B_{ul} \, \bar{I}_\nu + C_{ul} \right] = n_l \left[B_{lu} \, \bar{I}_\nu + C_{lu} \right]$$

• Assuming LTE conditions the Boltzmann distribution governs each

$$\frac{n_{u}}{n_{l}} = \frac{g_{u}}{g_{l}} e^{-(E_{u} - E_{l})/k T_{ex}} \qquad \qquad \frac{C_{lu}}{C_{ul}} = \frac{g_{u}}{g_{l}} e^{-(E_{u} - E_{l})/k T_{kin}}$$

If the radiation originates from a blackbody (e.g., the CMB) with a temperature T_{bg}, the excitation temperature and kinetic temperature of a gas bathed in a background radiation field of temperature Tbg is given by:

$$e^{(E_u - E_l)/k \, T_{ex}} = \frac{A_{ul} [1 + J_{\nu}(T_{bg})] + C_{ul}}{A_{ul} J_{\nu}(T_{bg}) + C_{ul} \, e^{-E_u/k \, T_{kin}}}$$

$$n_{u} \left[A_{ul} + B_{ul} \,\overline{I}_{\nu} + C_{ul} \right] = n_{l} \left[B_{lu} \,\overline{I}_{\nu} + C_{lu} \right]$$

• Assuming LTE conditions the Boltzmann distribution governs each

$$\frac{n_{u}}{n_{l}} = \frac{g_{u}}{g_{l}} e^{-(E_{u} - E_{l})/k T_{ex}} \qquad \qquad \frac{C_{lu}}{C_{ul}} = \frac{g_{u}}{g_{l}} e^{-(E_{u} - E_{l})/k T_{kin}}$$

If the radiation originates from a blackbody (e.g., the CMB) with a temperature T_{bg}, the excitation temperature and kinetic temperature of a gas bathed in a background radiation field of temperature Tbg is given by:

$$e^{(E_u - E_l)/k\,T_{ex}} = \frac{A_{ul}[1 + J_{\nu}(T_{bg})] + C_{ul}}{A_{ul}J_{\nu}(T_{bg}) + C_{ul}\,e^{-E_u/k\,T_{kin}}}$$

• Two important cases: collisions unimportant or collisions dominate

- Collisions Unimportant: $T_{ex} = T_{bg}$

Mostly radiative excitation and population is in equilibrium with background

- Collisions Unimportant: $T_{\rm ex}=T_{\rm bg}$

Mostly radiative excitation and population is in equilibrium with background

- Collisions dominate: $T_{ex} = T_{kin}$

Mostly collisonal excitation and population is in thermal equilibrium

- Collisions Unimportant: $\,T_{\rm ex} = T_{\rm bg}$

Mostly radiative excitation and population is in equilibrium with background

- Collisions dominate: $T_{ex} = T_{kin}$

Mostly collisonal excitation and population is in thermal equilibrium

 Useful quantity: critical density – density of H₂ at which downward collisions equal downward radiative processes

$$A_{ul} + A_{ul}J_{\nu}(T_{bg}) = n_{H_2}\gamma_{ul} \qquad n_{crit} = \frac{A_{ul}(1 + J(T_{bg}))}{\gamma_{ul}} \approx \frac{A_{ul}}{\gamma_{ul}}$$

- Collisions Unimportant: $\,T_{\rm ex} = T_{\rm bg}$

Mostly radiative excitation and population is in equilibrium with background

- Collisions dominate: $T_{ex} = T_{kin}$

Mostly collisonal excitation and population is in thermal equilibrium

 Useful quantity: critical density – density of H₂ at which downward collisions equal downward radiative processes

$$A_{ul} + A_{ul}J_{\nu}(T_{bg}) = n_{H_2}\gamma_{ul} \qquad n_{crit} = \frac{A_{ul}(1 + J(T_{bg}))}{\gamma_{ul}} \approx \frac{A_{ul}}{\gamma_{ul}}$$

• Measure of the density at which collisional excitation becomes effective

• Now we can quantify how spectral lines are created – only part of the puzzle.

- Now we can quantify how spectral lines are created only part of the puzzle.
- In the real world the spectral lines are modified by the medium through which they pass radiative transfer.

- Now we can quantify how spectral lines are created only part of the puzzle.
- In the real world the spectral lines are modified by the medium through which they pass radiative transfer.
- Radiative Transfer Equation:

$$\frac{\mathrm{d}\mathbf{I}_{\nu}}{\mathrm{d}\mathbf{s}} = -\kappa_{\nu}\mathbf{I}_{\nu} + \epsilon_{\nu}$$

- Now we can quantify how spectral lines are created only part of the puzzle.
- In the real world the spectral lines are modified by the medium through which they pass radiative transfer.
- Radiative Transfer Equation:

• Related to the molecular emission via the molecule's Einstein Coefficients:

$$\epsilon_{\nu} = \frac{h\nu_{ul}}{4\pi} n_u A_{ul} \phi(\nu) \qquad \qquad \kappa_{\nu} = \frac{h\nu_{ul}}{4\pi} (n_l B_{lu} - n_u B_{ul}) \phi(\nu)$$

• The definition of optical depth is useful:

 $\tau_{\nu} = -\kappa_{\nu} \mathrm{ds}$

• The definition of optical depth is useful:

$$\tau_{\nu} = -\kappa_{\nu} \mathrm{ds}$$

$$\frac{\mathrm{dI}_{\nu}}{\mathrm{d}\tau_{\nu}} = \mathrm{I}_{\nu} - \frac{\epsilon_{\nu}}{\kappa_{\nu}} = \mathrm{I}_{\nu} - \mathrm{S}_{\nu}$$

Where S_{ν} = $\epsilon_{\nu}/\kappa_{\nu}$ completely describes the

medium and is known as the source function

• The definition of optical depth is useful:

 $\tau_{\nu} = -\kappa_{\nu} \mathrm{ds}$

$$\frac{\mathrm{dI}_{\nu}}{\mathrm{d}\tau_{\nu}} = \mathrm{I}_{\nu} - \frac{\epsilon_{\nu}}{\kappa_{\nu}} = \mathrm{I}_{\nu} - \mathrm{S}_{\nu}$$

Where S_{ν} = $\epsilon_{\nu}/\kappa_{\nu}$ completely describes the medium and is known as the source function

• Solving the radiative transfer equation we get:

$$I_{\nu,s} = I_{\nu,0} e^{-\tau_{\nu}} + S_{\nu} (1 - e^{-\tau_{\nu}})$$

• The definition of optical depth is useful:

 $\tau_{\nu} = -\kappa_{\nu} \mathrm{ds}$

$$\frac{\mathrm{d}\mathbf{I}_{\nu}}{\mathrm{d}\tau_{\nu}} = \mathbf{I}_{\nu} - \frac{\epsilon_{\nu}}{\kappa_{\nu}} = \mathbf{I}_{\nu} - \mathbf{S}_{\nu}$$

Where S_{ν} = $\epsilon_{\nu}/\kappa_{\nu}$ completely describes the medium and is known as the source function

• Solving the radiative transfer equation we get:

$$I_{\nu,s} = I_{\nu,0}e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$$

Attenuated emission

• The definition of optical depth is useful:

 $\tau_{\nu} = -\kappa_{\nu} \mathrm{ds}$

$$\frac{\mathrm{dI}_{\nu}}{\mathrm{d}\tau_{\nu}} = \mathrm{I}_{\nu} - \frac{\epsilon_{\nu}}{\kappa_{\nu}} = \mathrm{I}_{\nu} - \mathrm{S}_{\nu}$$

Where S_{ν} = $\epsilon_{\nu}/\kappa_{\nu}$ completely describes the medium and is known as the source function

• Solving the radiative transfer equation we get:

$$I_{\nu,s} = I_{\nu,0} e^{-\tau_{\nu}} + S_{\nu} (1 - e^{-\tau_{\nu}})$$

Attenuated emission

Emitting medium

• The definition of optical depth is useful:

 $\tau_{\nu} = -\kappa_{\nu} \mathrm{ds}$

$$\frac{\mathrm{dI}_{\nu}}{\mathrm{d}\tau_{\nu}} = \mathrm{I}_{\nu} - \frac{\epsilon_{\nu}}{\kappa_{\nu}} = \mathrm{I}_{\nu} - \mathrm{S}_{\nu}$$

Where S_{ν} = $\epsilon_{\nu}/\kappa_{\nu}$ completely describes the medium and is known as the source function

• Solving the radiative transfer equation we get:

$$I_{\nu,s} = I_{\nu,0} e^{-\tau_{\nu}} + S_{\nu} (1 - e^{-\tau_{\nu}})$$

Attenuated emission

Emitting medium

General solution assuming an isothermal homogeneous medium

• Brightness temperature is defined as the temperature measured of the source function was well approximated by the Rayleigh-Jeans law:

$$T_{\rm b} = \frac{c^2}{2k\nu^2} B_{\nu}(T_{\rm R}) = \frac{h\,\nu}{k}\,J_{\nu}(T_{\rm R}) \qquad \qquad J_{\nu}(T) = (e^{(E_{\rm u} - El)/kT} - 1)^{-1}$$

• Brightness temperature is defined as the temperature measured of the source function was well approximated by the Rayleigh-Jeans law:

$$T_{\rm b} = \frac{c^2}{2k\nu^2} B_{\nu}(T_{\rm R}) = \frac{h\,\nu}{k}\,J_{\nu}(T_{\rm R}) \qquad \qquad J_{\nu}(T) = (e^{(E_{\rm u} - El)/kT} - 1)^{-1}$$

• The solution to the radiative transfer equation may expressed as

$$T_{\rm b} = \frac{h\,\nu}{k}\,J_{\nu}(T_{\rm bg})\,e^{-\tau_{\nu}} + \frac{h\,\nu}{k}\,J_{\nu}(T_{\rm s})\,(1-e^{-\tau_{\nu}})$$

• Brightness temperature is defined as the temperature measured of the source function was well approximated by the Rayleigh-Jeans law:

$$T_{\rm b} = \frac{c^2}{2k\nu^2} B_{\nu}(T_{\rm R}) = \frac{h\,\nu}{k}\,J_{\nu}(T_{\rm R}) \qquad \qquad J_{\nu}(T) = (e^{(E_{\rm u} - El)/kT} - 1)^{-1}$$

• The solution to the radiative transfer equation may expressed as

$$T_{\rm b} = \frac{h\,\nu}{k}\,J_{\nu}(T_{\rm bg})\,e^{-\tau_{\nu}} + \frac{h\,\nu}{k}\,J_{\nu}(T_{\rm s})\,(1-e^{-\tau_{\nu}})$$

• Two special cases:

.

Optically Thin Emission: $(\tau \ll 1)$ $T_b = \frac{h \nu}{k} [J_{\nu}(T_s) - J_{\nu}(T_{bg})] \tau_{\nu}$

Optically Thick Emission: $(\tau \gg 1)$

$$T_{\rm b} = \frac{h\,\nu}{k} \left[J_{\nu}(T_{\rm s}) - J_{\nu}(T_{\rm bg}) \right]$$

• Optically thick transition:

Brightness temperature of a line saturates at Tex

Under LTE conditions Tkin = Tex

$$T_{\rm kin} = T_{\rm s} = \frac{h\nu}{k} \left[\ln \left(1 + \frac{(h\nu/k)}{T_{\rm b} + \frac{h\nu}{k} J_{\nu}(T_{\rm bg})} \right) \right]^{-1}$$

• Optically thick transition:

Brightness temperature of a line saturates at Tex

Under LTE conditions Tkin = Tex

$$T_{\rm kin} = T_{\rm s} = \frac{h\nu}{k} \left[\ln \left(1 + \frac{(h\nu/k)}{T_{\rm b} + \frac{h\nu}{k} J_{\nu}(T_{\rm bg})} \right) \right]^{-1}$$

• Optically thin transition:

Intensity under a line proportional to Tex and the number of molecules

$$N_{\rm u} = \frac{8k\pi\nu^2}{A_{\rm ul}hc^3} \int_{-\infty}^{\infty} T_{\rm b} \,dv \,\left(\frac{\tau_{\nu}}{1 - e^{-\tau_{\nu}}}\right)$$

$$N = \frac{N_u}{g_u} e^{E_u/kT} Q(T_{ex}) \qquad \qquad Q(T_{ex}) = \sum_i g_i e^{-E_i/kT_{ex}}$$

A little bit of Theory Physical parameters from observations

• The rotation diagram

Case Study Hot Molecular Cores

Case Study Hot Molecular Cores

Case Study Hot Molecular Cores

Case Study Hot Molecular Cores - Chemistry

- Temperature gradient leads to an 'onion-layer' effect.
- Volatile non-polar ices evaporate at lower T, creating chemical shells.

• However chemistry is also time-dependant as central object is evolving

• Variables: initial abundances, geometry, mass, presence of shocks etc

Case Study Hot Molecular Cores - Chemistry

Case Study

Case Study Hot Molecular Cores - Chemistry

H-alpha image

Sequential star formation?
- 42 sources with IR excess.
- NE-SW reddened colour gradient implies recent sequential SF

lonised gas:

- Peaked & confined in west
- Electron temperature gradient

Other tracers of star-formation: - Methanol Masers, Water Masers - CO band-head (disks, winds?)

Hill et al observed the region as part of a large 1.2mm continuum survey - Hill et al 2005, 2006

Sensitive to cool dust & free-free emission

~ 75" = 0.7 pc

Image credit: Johannes Schedler

Hill et al observed the region as part of a large 1.2mm continuum survey - Hill et al 2005, 2006

Sensitive to cool dust & free-free emission

Image credit: Johannes Schedler

~ 75" = 0.7 pc

Mopra:

- CO ... diffuse gas
- HCO⁺ ... kinematics
- CS ... intermediate gas
- N_2H^+ ... dense gas

Compact Array:

- Ammonia (NH_3) ... thermometer
- H₂O masers ... kinematics
- 23 GHz continuum
- Ionised gas
- Ultra-compact HII regions
- Hyper-compact HII regions

Case Study

Dissecting a star-forming region

- NH₃ emission follows 1.2-mm (except in HII region)
- Resolves 'clumps' (~0.5pc) into 'cores' (~0.1pc).

Case Study

Dissecting a star-forming region

Case Study Dissecting a star-forming region

- Temperature gradient away from the HII region
- Hot spots in eastern arm + free-free emission
- Gas is being dispersed in east & heated in west

- FELLWALKER used to decompose emission into 'cores'
- 25 cores found, M = $5 \rightarrow 500$ solar masses
 - Values corrected for abundance variations by comparison to new 450 micron data from APEX (Andre 2008)

- FELLWALKER used to decompose emission into 'cores'
- 25 cores found, M = $5 \rightarrow 500$ solar masses
 - Values corrected for abundance variations by comparison to new 450 micron data from APEX (Andre 2008)
- Clump mass & luminosity suggest 8 50 M_{sun} stars are forming in each clump
 - Weak evidence for an evolutionary gradient

• Virial masses:

$$M_{\rm vir} = k \, r \, \Delta V^2$$

- Find that all cores are at least gravitationally bound
- Magnetic support:

$$\mathbf{B}^2 - \mathbf{B}_0^2 = \frac{9}{10} \left(1 - \frac{10}{9 \, \mathrm{f}} \right) \frac{\mathbf{G} \, \mathbf{M}^2 \, \mu_0}{\mathbf{R}^4 \, \pi}$$

- Find that fields of 1 \rightarrow 40 mG required
 - Higher than $\sim 1 \rightarrow 6$ mG typically measured in MSF
 - Cores likely to be collapsing

• Classic velocity signature of an expanding shell

Case Study

Dissecting a star-forming region

- Evidence for bulk gas motions seen in line profiles (Park '96)
- Clump is dominated by significantly blue-skewed profiles
 - Infalling gas motions

- HII region expanding into a dense molecular cloud
- Heating and/or dispersing the immediate environment
- Very young massive star formation observed in dark clumps
- Cores collapsing while also showing evidence of outflows
- Some evidence of an age gradient triggering?

Summary

- Molecular lines are an incredibly useful diagnostic of processes in the Galaxy
- With a few simple assumptions you can determine the physical and chemical and kinematic conditions in star-formation regions
- For a more detailed description please see the notes.

Thanks for listening!