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Thank you once again to the Data Quest community, 
faculty and partners for their extraordinary support 
during a challenging year. 

Thanks to the  Data Quest  2020 researchers who 
pushed the limits, despite the odds, to produce the 
incredible AI applications for Bushfire mitigation and 
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THE PROMISE OF ARTIFICIAL 
INTELLIGENCE FOR BUSHFIRE 
DEFENCE

In this document we will 
explore the potential for AI to 
tackle the following questions:  
 
Can we use AI and satellite data to 
improve the resolution of Australia’s 
fuel moisture map? 
 
AI can produce moisture maps nearly 
50 times more detailed and update 
them dynamically every five days. 

Can we use AI and geostationary 
satellites (which sit over Australia 
and deliver an ‘always on’ view) to 
provide early warning of fire ignition?  

Initial tests suggest that fire-warnings 
could come from geo-stationary 
satellites in near-real time. This 
demonstration has only been tested 
on historical data as of now, but the 
workflow is promising. 

Once we have an ignition, can we 
help fire-fighters and communities 
understand the evolution of the 
bushfire?
 
The physics and co-factors of bushfire 
progress are complex, however, AI can 
potentially match the performance of 
models on supercomputers - which 
are stretched thin during fire season. 
This opens up the possibility of more 
localised prediction capabilities and 
faster predictions in the hands of first 
responders, giving decision-makers 
the possibility of a more tactical and 
effective response.
 
Can we determine the ferocity of a fire 
to help triage strategic decisions? 
 
Fire clouds - pyrocumulonimbus – are 
visible from space and detectable with 
AI. These clouds are nature’s way of 
saying, “things are getting serious”, 

Artificial Intelligence (AI) is emerging as a particularly useful tool for detection 
and prediction of bushfires.
 
Once trained, AI pipelines are able to maintain vigilance over enormous data 
volumes and make accurate predictions on future events based on observations of 
the past. This is why the fusion of geospatial data from space- and ground-based 
sensors using AI holds so much promise for bushfire resilience and mitigation.

During the 2020 Data Quest the potential of space data and AI for bushfire defense 
was explored across the following challenge areas: (1) Fuel Assessment - in other 
words, the dryness and characteristics of the bush itself, which informs both the 
likelihood of a destructive fire and its progress; (2) Early Detection - crucial for 
rapid response and triage; (3) Fire Behaviour - how a fire evolves is critical for co-
ordinated response planning. 
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as the clouds create their own weather 
system around a fire. Early detection 
of this phase shift from space and 
the ability to warn fire-fighters and 
communities on the ground could be a 
lifesaver.
  
This work demonstrates the potential 
for AI and space data to help tackle one 
of humanity’s most pernicious and 
urgent challenges. 

In this Proceedings, we will cover these 
topics in more detail and expand on the 
implications for the ‘bushfire-system’ 
- the complex interaction of fire-
ecology with the social and technical 
response architecture that bravely 

defends us each fire season.  
This work is dedicated to all the 
bushfire and wildfire professionals 
who put their lives on the line, with 
a special thanks to everyone that 
provided the invaluable insight to 
ensure this work was fit for purpose. 
We owe an enormous debt of thanks to 
our remarkable Data Quest researchers, 
who worked so hard to push the limits 
of what is currently possible.  

We encourage feedback 
of all sorts.

Cormac Purcell 

Program Director 
Bushfir�es�DataQuest�2020�
Trillium Tech Pty Ltd 
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A NEW ERA OF 
MEGAFIRES
Wildfires have been front-and-centre 
in the public consciousness because of 
two unprecedented and catastrophic 
fire seasons. 

The first in eastern Australia during 
2019 / 2020, and the second in 
California, Oregon and Washington 
State in the late summer of 2020 -  and 
at the time of writing still plaguing 
Colorado. 

The emergency services and 
information infrastructure in both 
Australia and the USA have been hard-
pressed to cope with the size and 
ferocity of the “megafires”, leading 
to tragic loss of life, large numbers of 
citizens becoming internal refugees, 
and massive destruction of flora, fauna 
and property. In apocalyptic scenes, 
the populations of whole Australian 
towns were dramatically evacuated 
from beaches by the armed forces. In 
the US, fast-moving firestorms tore 
through towns, separating families 
and destroying homes and livelihoods. 
Similarly damaging fire seasons 
(especially in terms of pollution and 
health costs) were experienced in 
Siberia and Indonesia in recent years, 
even if these were less widely reported 
in the news. 

Continued global heating is a major 
driver of the 2020 bushfires, which 
were also exacerbated by the El Niño/
La Niña weather oscillation. Climate 
models predict that fire seasons like 
those experienced in 2020 will be the 
new normal in the future.

The vital role of wildlands in 
ecosystem services.  

Often overlooked in comparison to the 
human cost is the damage bushfires 
bring to Earth’s vulnerable wildlands 
(what Antipodeans call ‘The Bush’). 
Earth’s wildlands provide habitat for 
around 6.5 million species according 
to the United Nations Environment 
Program. Wildlands contribute to 
energy development, recreational and 
spiritual opportunities for us humans 
and provide irreplaceable ecosystem 
services to the Earth system, such 
as clean water, nutrient cycling, 
pollination, and habitat for key actors 
in the food chain.

Effective management of prescribed 
fires is an essential step toward healthy 
and sustainable wildlands. Large 
expanses of bushland in Australia 
and elsewhere have evolved with fire 
and depend on periodic wildfires for 
regeneration. 

A quantitative understanding of 
the relationships between fuel, fire 
behaviour, and the effects on human 
development and ecosystems can help 
stewards of wildlands develop nimble 
solutions to Australian bushfire 
problems. 
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Map of Eastern NSW centred on Sydney showing the extent of the burnt areas 
in the wake of the 2020 fire season.  
 
Source: https://datasets.seed.nsw.gov.au/dataset/google-earth-engine-burnt-
area-map-geebam
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Fire consumes millions of hectares 
of Australian land each year, with 
the cost from the 2020 season alone 
estimated to be AU$100 billion. Whole 
towns have been scoured from the map 
and livelihoods have been destroyed, 
especially in regional areas.

High-intensity bushfires also 
contribute to post fire erosion, soil 
loss, flooding events and loss of timber 
resources. This results in negative 
impacts on wildlife habitat, ecosystem 
resilience, infrastructure, and 
recreational opportunities, in addition 
to knock-on effects for businesses tied 
closely to the land.

However, new capabilities in remote-
sensing and artificial intelligence can 
help prepare for coming fire seasons, 
improve fire-fighting capability and 
boost the resilience of fire-affected 
communities, and ecosystems. 

NEW LEVELS OF INTENSITY 
REQUIRE NEW TOOLS
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AI: ACTIONABLE 
INTELLIGENCE

There are very few places on Earth 
that are not photographed or 
otherwise ‘measured’ at least once 
per day. 

Satellites image the whole globe, 
revisiting locations every few days 
or hours to record the changing 
landscape. Their cameras see deep into 
the infrared and ultra-violet, capturing 
information on chemistry, temperature 
and other physical conditions. Newer 
instruments can resolve details on 
centimetre scales, locating individual 
trees and buildings. At the same time, 
ground-based sensors like weather 
stations and lightning detectors 
record surface conditions unavailable 
from space. All of this data is stored - 
sometimes by commercial companies, 
but often by government agencies 
under open-access policies. However, 
there remain significant barriers for 
non-specialists to access and use 
this information as part of a project 
workflow.

For bushfire management, the real 
promise of this data is in translating 
it to actionable intelligence, directly 
answering queries like “Which areas 
are at risk of ignition if struck by 
lightning?” or “Show me a map of the 
water level in streams wider than 1 
meter.” or “The wind has just changed 
- where will the active fire spread to 
now”? 

To answer these questions requires 
the synthesis of disparate data-
streams - imagery, time-series, 
spectral information, point-clouds 
and ad-hoc measurements. Machine 
learning (ML, a branch of artificial 
intelligence - AI) excels at this type of 
data-fusion. 

Building a machine learning workflow 
is a specialist task requiring experience 
and knowledge to get right. However, 
the professional frameworks for 
building ML models (e.g., PyTorch, 
TensorFlow, Keras) are adaptable and 
have large libraries that enable fast 
prototyping. Once an appropriate ML 
algorithm has been identified (an art in 
itself), the first major task is to write a 
‘data-loader’ that can translate input 
data into the required format. 

Training the ML algorithm can take 
significant time and computing power, 
but once complete the model has the 
potential to make accurate predictions 
in seconds, on a portable device. 

If deployed correctly, such ML 
algorithms could change how bushfires 
are prepared for, tackled and ultimately 
recovered from. 
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This proceedings document gives examples of four 
projects that leverage machine learning to address three 
key challenges managing bushfires in Australia and 
worldwide:

Each of these projects is at an early stage of development 
(Technology Readiness Level 2 - 3) with proof-of-concept 
work done over an intense research sprint plus book-end 
periods. When finalised and validated, these capabilities 
would enhance the ability to assess fire risk in the landscape 
on fine scales, detect fires earlier, predict the path of fire 
in response to dynamic weather conditions and potentially 
warn about extreme fires.

High-resolution and frequent Live 
Fuel Moisture maps from orbit. 

Directly mapping fire risk and 
predicting fire-spread using 
satellite data.
 

Reliable early detection and 
localisation of new fires. 

Investigating signatures of extreme 
fire behaviour.
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TECHNOLOGY  
READINESS LEVEL

We assess the maturity of machine 
learning algorithms and their potential 
for deployment by using a scoring 
methodology based on the Technology 
Readiness Level (TRL) system. 

TRL is a systems-engineering protocol 
created by NASA and DARPA in the USA for 
reliably developing, integrating and scaling 
complex interdependent technologies and 
cross-disciplinary teams. 

The power of the TRL system is its ability 
to create a common language and set of 
standards between collaborators. Critical 
reviews and validation experiments 
are run at each level, firmly guiding 
the development of an idea, from the 
blackboards of researchers, via the test-
bench, to an operational tool. 

The TRL framework is useful for assessing 
near-term solutions, but also medium and 
longer term opportunities, and how they 
can fit together into an integrated system. 

The Data Quest accelerated research 
sprint is designed to take proof-of-
concept ideas to TRL 2 - 3 by showing how 
a challenge is solvable using machine 
learning and by documenting missing or 
highly desirable data.

Technology Readiness Levels for Machine 
Learning Systems
Alexander Lavin & Gregory Renard

https://arxiv.org/pdf/2006.12497.pdf
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BUILDING A COMMUNITY: 
FROM OUR PARTNERS
The Bushfire Data Quest is as much about building a community of partners as it is about 
research. Each organisation in our network holds pieces of the puzzle and it is only by 
working together that we can realise our mutual benefit.

Minderoo Foundation Wildfire and Disaster Resilience Program is excited to 
be the Challenge Partner of the Bushfire Data Quest 2020. With this year’s fire 
season fast approaching and communities still feeling the disastrous effects of 
Australia’s bushfire crisis last summer make our collective work  - including 
piloting new ways of preparing for and responding to disasters more vital than ever.  
 
Minderoo Foundation’s experience working on the ground in fire affected 
communities this year has highlighted that existing technology and systems 
leave us ill-equipped to deal with large-scale disasters like fire, flood and other 
unforeseen challenges. We know further threats and shocks will come in the future, 
and this is why we need new approaches to lift national resilience. The Bushfire 
Data Quest 2020 builds on the excellent work many are already doing in this space, 
tackling change through the system as a whole, and supporting out of the box 
thinking and solutions. I’m pleased that we can support the great minds that have 
come together to solve parts of the problem and trial new methods to overcome the 
grand challenges we face in this area.

Using AI and geospatial data, the Bushfire Data Quest has the potential to unlock 
new ways to protect Australian, communities and wildlife from devastating 
bushfires. 
 
We are proud to support this collaborative and innovative effort which has the 
potential to enhance worldwide bushfire management and prevention.  
 
We look to support initiatives with the potential to solve profound problems 
and save lives. We are honoured to be part of the extremely valuable work of the 
Bushfire Data Quest. With only a few months until the next bushfire season, this 
research sprint could have an important role in protecting our nation.

”

”

“

“

Adrian Turner 
CEO, Minderoo Foundation Fire Fund 
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As the clock ticked over to welcome in the year 2020, we watched in horror as 
bushfires ravaged our country. More than 20% of our native forests burned, an 
estimated one billion Australian animals perished, lives were lost, and homes 
destroyed. All that we held so dear as Australians was severely damaged.  
 
Data Quest aims to push the frontiers of research and develop new tools to help 
solve some of the biggest challenges that humanity faces. This year’s Bushfire Data 
Quest 2020 is indeed addressing a challenge close to our hearts.  
 
The team at DUG is excited to be part of a collaboration of industry, technology, 
science and research that will push the boundaries of conventional thinking in 
the quest to discover real solutions to improve our planet.  We are honoured to 
provide the technology platform that will be the launching pad of truly powerful 
thinking.

In a country with a high bushfire risk, satellite images and data play an 
increasingly vital role in protecting our communities and environment. Not only 
do satellites help detect bushfires, they can allow us to predict their movement 
and assess the damage they cause. 
 
The NSW Government is supporting the development of local capability through our 
$5 million Space Industry Development Strategy, generating investment and jobs 
in this important sector and contributing to safety and well-being in our fire-prone 
landscapes. We’re proud to support FDL’s Bushfire Data Quest and look forward to 
seeing the unique solutions developed to manage and prevent bushfires.

Bushfire Data Quests collaborative, data-led approach will not only consolidate 
our historic knowledge in this crucially important environmental area, but also 
allow for the development of strategies to plan for, and mitigate, future bushfire 
events.

”

”

”

“

“

“

The Hon. Stuart Ayres MP 
Minister for Jobs, Investment, Tourism  
and Western Sydney

Professor Hugh Durrant-Whyte 
NSW Chief Scientist & Engineer
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In response to the devastating Australian bushfires in January the Minister 
for Industry, Science and Technology, the Hon Karen Andrews MP, tasked the 
Australian Space Agency to consider the role of space-based Earth Observation 
to support planning, response and recovery efforts related to bushfires. We 
now have the opportunity to further innovate how we use satellite data through 
Earth Observation imagery. In partnership with the Commonwealth Scientific and 
Industrial Research Organisation (CSIRO), Geoscience Australia (GA) and the Bureau 
of Meteorology, the Australian Space Agency has established a taskforce which has 
engaged with emergency management agencies, state and territory governments, 
and the research community. The taskforce is working together to understand this 
issue and consider opportunities for the future, including how we can effectively 
apply satellite data to mitigate the risk of bushfires occurring and further enhance 
our response during bushfires.

”“

UNSW Canberra Space gets out of bed each day to develop and demonstrate the 
art of the possible for combining artificial intelligence and space technologies, to 
help meet challenges and opportunities on the ground. Intelligent space systems 
offer a pathway to rapidly turn remotely sensed data into actionable information, 
piped directly to the user. The Bushfire Data Quest is an excellent specific example 
of the broader opportunity offered by FDL, to develop both the science and the 
talent pool that are needed for that future, and UNSW Canberra Space is excited to 
be closely involved.

”“

UNSW CANBERR A

BUILDING A COMMUNITY: 
FROM OUR PARTNERS
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The recent bushfire seasons have been startlingly severe. The impacts are felt 
throughout the entire community. At Fireball we use sensor fusion and machine 
learning to detect bushfires within minutes of ignition and to model bushfire 
behaviour. It is exciting for Fireball to be a part of Data Quest and to contribute 
to the development of new technologies that may help us better understand and 
respond to bushfire risks.

”“

The Bushfire Data Quest represents a fantastic opportunity to advance our 
thinking, and to help realise the true potential of near real-time Earth 
Observation applications to emergency management.

”“

Macquarie University is delighted to support Data Quest in their first Australian 
Data Quest: Detecting and Responding to Bushfires. Data Quest innovative 
approach exemplifies the tradition of cross-disciplinary, industry-engaged research 
upon which Macquarie University prides itself and we are excited to see the ideas 
and solutions generated at this ground breaking event.

”“

Northwest Nazarene University is pleased to partner with the Bushfire Data 
Quest. This is an excellent opportunity for the faculty and students of NNUs College 
of Natural & Applied Sciences to share the benefits of our ongoing applied research 
in disciplines as diverse as Fire Ecology, Astronautics, Biomedical, Agriculture and 
Archaeology. We look forward to continuing our partnership in the Bushfire Data 
Quest, with the goal of assisting in the development of solutions specific to the 
problems faced with management of bushfires in Australia and New Zealand.

”“
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AI FOR 
MEGAFIRES
Artificial intelligence has matured to 
the point where it can compliment, 
and improve on, the physics-based 
bushfire modeling methods that have 
been employed for the past 50 years. 

The enhanced capabilities of these 
new AI tools (sometimes called 
ecoinformatics) will position fire 
managers to better leverage the 
dramatic increase in information at 
their disposal in the next decade. 

The use of AI, along with data from 
newer satellites with higher resolution 
sensors, will enable countries such 
as Australia to lead the world in fire 
science and prediction. Traditional 
modelling methods, such as those used 
in the US, have been based on older 
empirical measurements and data from 
legacy observation platforms, such 

as Landsat. AI-based tools will allow 
Australia and other countries to rapidly 
integrate the latest data into more 
reliable predictions - without having to 
expend resources at the level that has 
been necessary in the past.  

The new methods, tools and datasets 
that are developed to manage bushfires 
in Australia can also be leveraged to 
address the wildfire problems faced by 
countries around the world. This will 
result in better planning, suppression 
and mitigation responses to bushfire 
globally and its effect on ecosystems 
worldwide.

The revolution in the use of AI is being 
driven by technological advances that 
are still accelerating today.
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ADVANCES
Advances in compute
Advances in computing hardware, 
algorithms and tools are making 
analytic capabilities possible in 2020 
that were relegated to science fiction 
just a few years ago. There has been 
an increasing effort to direct those 
analytic capabilities toward bushfire 
management, enabling land managers 
to better predict future fire behaviour 
and effects. These improved analytic 
approaches also promise to guide fuel 
treatment strategies,  mitigating the 
severity and extent of future bushfires.

Advances in data availability
As computing capabilities have 
increased, so also has the amount of 
data to which we can apply artificial 
intelligence to derive actionable 
knowledge. A significant source 
of rich data are Earth-observing 
satellites. In March 2020, the one-
hundred-millionth Landsat scene 
was downloaded from the USGS web 
portal, which first started offering 
Landsat imagery for download at no-
cost starting Oct 2008. Landsat ‘scenes’ 
have sizes of up to 1.5 gigabytes 
each and almost 150 petabytes (1.5 
x 1017 bytes) of imagery have been 
downloaded to date. This is not to 
mention data that’s been collected 
and downloaded from other satellite 
systems such as Sentinel, Himawari, 
and Planet Labs. 

Advances in resolution and 
fidelity
The increased resolution of the latest 
remote sensing platforms has already 
been shown to lead to more accurate 
fire-related data products compared 
to older systems (Hamilton 2017a, 
Hamilton, 2019). The accuracy of the 

analytics will continue to improve as we 
launch the next generation of satellites 
into orbit, offering even higher spatial, 
temporal and spectral resolution. The 
resulting flood of data will make the 
need for AI tools even more acute - this 
is because AI is uniquely capable of 
extracting actionable insight from large 
and heterogeneous datasets. As fire 
seasons become more intense, timely 
knowledge from these data and tools 
will be a step-change in our ability to 
combat bushfires. 

Advances in machine 
learning methods for bushfire 
mitigation
A recent review of potential machine 
learning applications for bushfires 
(Jain et al, 2020), identified potential 
applications for several types of ML 
models. For supervised learning 
models, applications included fire 
susceptibility, fire spread/burn area 
prediction, fire occurrence, severity, 
smoke prediction and climate change 
effects. For unsupervised learning 
models, applications included fire 
detection, fire mapping, burned area 
prediction, fire weather prediction, 
landscape controls on fire, fire 
susceptibility, and fire spread/
burn area prediction. Agent-based 
learning models were identified 
with applications in optimising fire 
simulators, fire spread and growth, fuel 
treatment, planning and policy, and 
wildfire response. The 2020 Data Quest 
investigated several of these research 
opportunities and ML applications, but 
there are many more opportunities that 
can be investigated.
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Fuels
AI applied to higher resolution 
imagery (spatial and spectral) will 
enable the generation of high-fidelity 
fuel mapping layers. The increased 
information content will provide 
bushfire analytic tools with geospatial 
layers representing the fuel state with 
higher accuracy and more frequent 
cadence than currently available. This 
improved fuel data is the key driver 
of fire fisk maps and fire behaviour 
models.

Behaviour
ML-models can make rapid predictions 
of what an existing fire will do, 
adapting quickly to changes in the 
weather conditions. This is critical 
information for ground forces fighting 
campaign fires as early warnings of 
changes will likely save lives. Before 
each fire season, predictive analytics 
will inform fire managers on the best 
fuel treatments to apply by modelling 
their impact on the behavior of a 
potential future bushfire. On longer 
timescales, behaviour models will help 
determine what affects climate change 
is likely to have on ecosystems during 
future fire seasons.

Post-fire effects measure the change 
that a bushfire has on an ecosystem, 

focusing on the days, weeks and 
years following the fire. Improved 
bushfire analytics provide an intriguing 
opportunity to provide actionable 
insights to fire managers, enabling 
them to develop and deploy post-fire 
recovery strategies on a burned area in 
a timely manner. Improved knowledge 
of the immediate effects will efficiently 
enable managers to prescribe 
mitigation strategies that will provide 
for quicker recovery of the burned area, 
resulting in more resilient ecosystems.

Detection
Timely localisation of new bushfire 
ignitions is a critical component of the 
toolset that can be built to improve 
management of our wildlands. The 
ability to maximise both the temporal 
and spatial resolution of detections 
can greatly reduce the amount of 
time from initial ignition to the 
start of suppression efforts. These 
ecoinformatic tools have the capability 
to improve the initial response times 
of the fire service crews, enabling 
the initiation of suppression efforts 
even quicker than is currently 
possible. These improvements can 
be accomplished by leveraging the 
data streams of current and future 
generations satellites, augmented with 
a network of land based cameras.
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Where can we go from here?

One of the primary accomplishments of the 2020 Data Quest was 
to show what could be accomplished by bringing the brightest AI 
engineers together with exceptional fire ecologists, determining what 
is ‘solvable’ using currently available tools, but also where we need to 
invest to close data-gaps. 
 
The findings are discussed in the following section. 
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DATA FOR AI AND 
BUSHFIRE MANAGEMENT

AI is only as good as the data it 
has to work on.

A promising range of Earth-observation, 
geospatial and environmental data 
exists in Australia and New Zealand, 
that is suitable for use with AI-
enhanced bushfire response systems. 
This includes multi-spectral imagery, 
synthetic aperture radar, LIDAR 
measurements of elevation and 
tree-cover, digital elevation models, 
vegetation type maps, weather station 
measurements (temperature, humidity, 
pressure), historic fire boundaries, 
historic fire progression maps, 
lightning ground-strike detections and 
fire ignition points.
 
All of these datasets inform models of 
fire risk in the landscape, or predictions 
of fire behaviour. Some datasets can 
be used to detect potential ignition 
sources and fires just starting to burn. 
However, to complete the vision of 
AI enabled bushfire resilience and 
mitigation, more investment is needed. 

“AI ready data” is different 
from scientific data.

Data veracity, availability and 
completeness are the holy trinity of 
Artificial Intelligence. Incomplete 
data and outdated documentation 
complicate effective alignment 
of datasets and can add weeks of 
painstaking effort to a scientific 
machine learning project, with 
significant increases to research 

overhead and cost.

Input data needs to be assessed for 
missing or confounding values, such 
as blank or misaligned swaths, which 
can erroneously draw the attention 
of ML algorithms during the training 
phase. Similarly, noise and redundancy 
(causing data or class imbalance) 
also confound model performance. 
Supervised learning methods require 
well-labelled data to train models, 
while self-supervised methods 
need large volumes of examples. 
However, often labeling is non-
existent or incomplete. This is further 
compounded by lack of enough data for 
a model to learn any patterns within 
the corpus to enable self-supervised 
methods to be applied. Synthetic data 
can help here, however, if ground 
truth is unavailable, any ML outcome is 
problematic to validate.

Oftentimes project data may require 
significant pre-processing to be ready 
for a machine learning pipeline. Data is 
also often widely distributed, difficult 
or costly to aggregate, requiring 
permissions and negotiations with data 
curators as part of the ETL (Extract / 
Transform / Load) process - a further 
time sink. In this way, cleaned, pre-
aggregated and pre-processed data 
saves time and allows researchers to 
focus on the science. However, some 
emerging ML techniques require raw 
data to extract as much information as 
possible - critical for concepts such as 
autocorrection and super-resolution. 
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Deployed ML-systems 
need maintenance in 
the face of data drift
Establishing performance metrics and 
an agreed range of output parameters 
are key to establishing veracity 
of predictions, and for AI ethics. 
Deployed systems also need to have 
continuous access to a complete and 
well-maintained flow of data. The 
data itself can often drift (distribution 
drift in properties of the data and 
concept drift in the use of the data). 
Understanding critical confounding 
factors, such as instrument drift, noise 
and other variables is also vital before 
model pipelines are built. Monitoring 
data quality during acquisition is also 
important, as consistency is key in 
model validation.
 
Moreover, AI systems are rarely set-
up to adapt to these dynamic drifts 
and this remains a key impediment 
to the efficacy of machine learning in 
the real world and often the cause of 
embarrassing failures that get worse as 
time goes on.

DATA FOR AI AND 
BUSHFIRE MANAGEMENT
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AVAILABLE GEOSPATIAL 
DATA SOURCES FOR 
BUSHFIRE IN AUSTRALIA & 
NEW ZEALAND
The table below presents a list of data and data custodians. Of particular note is 
the Japanese Space Agency Himawari-8 geostationary weather satellite that 
records kilometre-resolution images of Australia every 10 minutes and was 
used by two of the Data Quest research teams. The European Space Agency 
Sentinel-1 (synthetic aperture radar) and Sentinel-2 (optical & infrared) satellites 
are also notable for imaging Australia every 5 days.
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DATA GAPS
Experience gained during the Data 
Quest has highlighted missing data, 
or lack of capability, that are urgently 
needed to fulfil the promise of AI-
driven bushfire management. 

These ‘data gaps’ were discovered by 
the research teams while pursuing 
their projects and highlighted as being 
critical to future work. The table below 
records the gaps and suggested targets 
to aim towards. Some gaps are easy 
to fill by exposing currently available 
data, or by processing data into more 
digestible forms. Closing other gaps 
requires new measurements or sensors. 

Some critical data is only available from 
commercial providers and should be 
purchased on behalf of organisations 
building bushfire management 
systems, or open alternatives 
developed. 

The table below presents a list of data 
gaps identified during the Bushfire 
Data Quest 2020.
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THE DATA QUEST RESULTS
The 2020 Bushfire Data Quest was 
created to accelerate interdisciplinary 
research that leveraged machine 
learning, remote sensing and bushfire 
science. Outcomes at TRL 2 - 3 were 
produced over a short period of time by 
creating small teams with a carefully 
balanced mix of expertise, and putting 
them to work in a ‘pressure cooker’ 
sprint environment. Teams were 
supported by a faculty of top-level 
experts.

Summaries of the results are 
presented in the following pages 
and the teams have written detailed 
technical memos, that are available in 
the Appendix.

How can we use historic fuel and 
moisture data to predict burn rate and 
intensity? 

FU
EL ASSESSMEN

T

D

A T A  Q U E S T  2 0 2 0

How can we use high resolution models 
and data fusion to detect fires earlier/
faster?

EA
RLY DETECTIO

N

D

A T A  Q U E S T  2 0 2 0

MAPPING FUEL MOISTURE CONTENT

FIRE RISK MAPS AND FIRE PROGRESSION

EARLY DETECTION OF FIRE IGNITION
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How can we use high resolution models 
and data fusion to detect fires earlier/
faster?

EA
RLY DETECTIO

N

D

A T A  Q U E S T  2 0 2 0

How can we use historical satellite 
imagery to improve predictive models 
of the behavior of wildfires and, in turn, 
better inform fire risk management 
and response?

FIR

E BEHAVIOUR

D

A T A  Q U E S T  2 0 2 0

EARLY DETECTION OF FIRE IGNITION SIGNATURES OF EXTREME FIRE BEHAVIOUR
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MAPPING FUEL 
MOISTURE CONTENT

RESEARCHERS

Maoying  
Qiao

Yang   
Chen

Vlad  
Tudor

Caitlin  
Adams

NEED:

High resolution and frequently updated Live Fuel Moisture 
Content map (dominating factor in fire risk) to feed risk 
maps and fire behaviour models.

CHALLENGE:

Make an accurate LFMC map on human scales (20m).
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METHOD:
Data fusion of optical and SAR data from ESA Sentinel satellites, 
calibrated with ground measurements. Used suite of regression models.

NEXT STEPS:
Need many more ground measurements that sample range of moisture, 
vegetation type and landscapes.

RESULT:
Proof of concept pipeline to create a LFMC map.
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EARLY DETECTION OF 
FIRE IGNITION

RESEARCHERS

Ilze  
Pretorius

Jack  
White

Kate  
Melnik

Alex   
Codoreanu

NEED:

Detect new fires earlier, with few false-positves and localise 
fire better.

CHALLENGE:

Make a better fire detection pipeline using satellite data.
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METHOD:
Apply astronomical image stacking and ML super-resolution 
algorithms to infrared images from the geostationary Himawari-8 
satellite.

NEXT STEPS:
Pipeline needs to incorporate reliable cloud masking and scale to 
cover larger areas.

RESULT:
Prototype pipeline for detecting fires within 10-20 minutes
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FIRE RISK MAPS AND 
FIRE PROGRESSION

RESEARCHERS

Mahdi  
Kazemi

Ehsan  
Abbasnejad

Martyn  
Eliott

Sam 
Van Holsbeeck

Yuri   
Shendryk

NEED:

Accurate fire-risk maps and just-in-time prediction of fire 
spread.

CHALLENGE:

 Create a map of fire risk from recent EO data and predict fire 
spread given ignition points.
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METHOD:
Neural networks that fuse Sentinel-2 images with terrain and 
weather information.

NEXT STEPS:
Add high resolution grid of weather data and scale to larger areas.

RESULT:
Two segmentation models that predict fire risk, fire scar boundary 
and temporal progression of fire.
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SIGNATURES OF 
EXTREME FIRE 

RESEARCHERS

Todd 
Ellis

Thomas 
McCavana

Stephane  
Mangeon

Anna 
Matala

NEED:

Early warning of when a fire will exhibit extreme behaviour, 
like generating a pyrocumulonumbus (pyro-Cb) cloud. 

CHALLENGE:
  
Investigate if remote-sensing data can be used to detect 
extreme fire behaviour earlier. 
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METHOD:
Use dimensionality reduction techniques (principal component 
analysis, PCA) and clustering to detect and isolate signals in multi-
spectral data from the Himawari-8 satellite

NEXT STEPS:
Expand the analysis to include higher resolution data and analyse 
spatial patterns.

RESULT:
Candidate signals from extreme fires and pyro-Cb events were 
detected in PCA and colour ratio plots.
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A/PROF DALE 
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BOM
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FIREBALL

SIMON OLIVER 
GEOSCIENCE AUSTRALIA

DR MARTA YEBRA 
AUSTRALIAN NATIONAL 
UNIVERSITY
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NNU STUDENT
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CSIRO
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DATA QUEST FACILITATION & SUPPORT

JAMES PARR 
FDL FOUNDER, CEO
TRILLIUM TECHNOLOGIES

CORMAC PURCELL 
DATA QUEST LEAD,
TRILLIUM TECHNOLOGIES 

EMELINE PAAT-
DAHLSTROM 
DATA QUEST TEAM

JODIE HUGHES 
DATA QUEST PRODUCER
TRILLIUM TECHNOLOGIES

RICHARD STRANGE  
DATA QUEST DATA 
WRANGLER

LEO SILVERBERG 
DESIGNER,
TRILLIUM TECHNOLOGIES

ERIC DAHLSTROM 
DATA QUEST TEAM

SARAH MCGEEHAN 
DATA QUEST CO-LEAD,
TRILLIUM TECHNOLOGIES 

SUDANTHA BALAGE 
UNSW SPACE & 
DATA QUEST STEERING 
GROUP

RUSSELL BOYCE 
UNSW SPACE & 
DATA QUEST STEERING 
GROUP

LEE SPITLER 
MACQUARIE UNIVERSITY & 
DATA QUEST STEERING 
GROUP

JENN ZHU 
CSIRO & DATA QUEST 
STEERING GROUP

DR ZHITAO XIONG 
NSSN & DATA QUEST 
SUPPORT

ADITYA CHOPRA 
ANU & DATA QUEST 
STEERING GROUP

MARK CHEUNG 
LOCKHEED MARTIN & 
DATA QUEST STEERING 
GROUP
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TECH MEMOS
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MAPPING FUEL 
MOISTURE CONTENT
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Abstract / Executive Summary 

In a country as dry as Australia, it is well understood that the absence of moisture in the 
landscape can lead to devastating bushfires. Reliable and frequent measurements of how wet or 
dry our vegetation is can aid fire preparation and management, particularly in helping plan 
controlled burns. The amount of moisture in vegetation across the country is currently estimated 
by the Australian Flammability Monitoring System, with one moisture value every 500 m2 (an area 
close to the size of four cricket fields). We set out to see if we could reduce this to a moisture 
value every 20 m2, by applying machine learning to data from the Copernicus Sentinel Satellites. 
While we were able to produce maps of vegetation moisture at this resolution, the accuracy and 
applicability of our method were hampered by the lack of ground measurements to inform our 
model. There is promise in this work, and we recommend the collection of more ground-based 
measurements of vegetation moisture, both by experts and citizen science programs, which 
would improve the accuracy and applicability of our approach. 

Introduction 

The moisture content of vegetation is an important factor in understanding fire behaviour, both in                             
the context of managing prescribed burns and predicting how wildfires might spread. Fires                         
interact with vegetation in complex ways, often igniting in dead vegetation on the ground but                             
spreading to the living canopy. Thanks to remote sensing (RS) techniques leveraging satellite                         
data, we are able to monitor live fuel moisture content (LFMC) from space on a regular basis. The                                   
Australian Flammability Monitoring System (AFMS, http://wenfo.org/afms/) currently provides               
timely spatial information on LFMC across the continent. However, this map is only available at                             
500m resolution, which prevents detailed insight into potential fire behaviour. Features in the                         
terrain as small as 50m can influence the rate of spread and intensity of a fire, meaning that a                                     
ten-fold increase in resolution would have a significant impact on predictions. Our team has                           
applied machine learning to 20m spatial resolution satellite data from the Copernicus Sentinel                         
satellites  to provide  high resolution estimates of LFMC, aiding bushfire management. 1

Identified Needs and Opportunities  

We identify the following needs that may be addressed using machine learning techniques  to 
integrate passive and active RS images: 

1) Create a finer-resolution map of LFMC in Australia at shorter cadence using Sentinel 
satellite observations. 

2) Obtain more accurate estimates of LFMC by integrating optical with synthetic aperture 
radar data. 

The algorithm to create the current AFMS product is described by Yebra et al. 2018 and uses a 
computationally expensive radiative transfer model to derive the LFMC map from MODIS  2

reflectance data. The radiative transfer models are applied using a 16-day composite of MODIS 
data (MCD43A4 Version 6) at 500 m spatial resolution. Such a coarse resolution is acceptable for 
setting the national fire danger rating, but is too coarse to model fire behavior at smaller scales. A 
finer-resolution LFMC estimate can be implemented using Sentinel 2 observations at 10-20m 
spatial resolution every 3 to 5 days. Sentinel-1 C-band (5.4 GHz) synthetic aperture radar (SAR) 

1 The Sentinel satellites are part of the European Space Agency (ESA) Copernicus network of Earth 
observation satellites. https://www.esa.int/Applications/Observing_the_Earth/Copernicus 
2 Moderate Resolution Imaging Spectroradiometer on the Terra satellite. 
https://terra.nasa.gov/about/terra-instruments/modis 
 
 

 

data has the potential to make the LFMC measurement more reliable because its longer 
wavelength can penetrate through canopy to detect understory vegetation and it is also less 
sensitive to weather conditions. Here we use both Sentinel-1 and -2 composite data through a 
computer vision approach to estimate LFMC for a test region in the Australian Capital Territory. 
We also make recommendations on increasing the number and diversity of ground-truth FMC 
measurements for various fuel types (e.g., grass fuel, shrubs, and forest overstorey and 
understorey fuel). Enriching the quality and quantity of the ground-truth data will improve the 
prediction capacity of the machine learning models in a more heterogeneous environment.  

Data description 

Our project used three datasets: Sentinel-2 optical imagery, Sentinel-1 radar imagery, and 
Globe-LFMC on-ground FMC measurements. The data from the two Sentinel missions was used 
to generate the feature variables for our approach, and the Globe-LFMC data was used as the 
target variable. 

Sentinel-2 

The Sentinel-2 mission is part of the European Space Agency’s Copernicus programme, and 
consists of two polar-orbiting satellites that measure the Earth’s reflectance over 13 bands in the 
visible, near-infrared, and short-wave infrared portions of the electromagnetic spectrum. The pair 
of satellites have a combined revisit time for Australia of around 3-5 days. The first satellite, 
Sentinel-2A, was launched on the  23rd of June, 2015, and the second satellite, Sentinel-2B, was 
launched on the 7th of  March, 2017. 

There are a number of processing steps involved in making data from Sentinel-2 analysis-ready. 
Importantly, the satellites measure light that has passed through the atmosphere, so the effects of 
this passage must be removed before useful insight can be gained about the Earth’s surface. This 
data product, known as bottom-of-atmosphere reflectance (sometimes referred to as Level-2 
data), can be directly used in analysis, and is the recommended product. There are a number of 
steps involved in producing analysis ready data, which can lead to minor differences in the 
products produced by different agencies. To this point, Level-2 data is available for Australia from 
Geoscience Australia (through the National Computational Infrastructure, Amazon Web Services, 
and the Digital Earth Australia Sandbox) and the European Space agency (through the Copernicus 
Hub). 

 

Service  Access  Description 

National 
Computational 
Infrastructure (NCI) 

http://dap.nci.org.au/thredds/rem
oteCatalogService?catalog=http://
dapds00.nci.org.au/thredds/catalo
g/if87/catalog.xml  

Direct access to Geoscience 
Australia’s Sentinel-2 ARD stored 
on the NCI through a THREDDS 
catalogue. 

Amazon Web 
Services (AWS) 

http://dea-public-data.s3-website-
ap-southeast-2.amazonaws.com/
?prefix=L2/  

Direct access to Geoscience 
Australia’s Sentinel-2 ARD data 
stored on AWS through S3 client 

Digital Earth Australia 
Sandbox 

https://app.sandbox.dea.ga.gov.a
u/  

A JupyterHub platform that can be 
used to access and analyse 
Geoscience Australia’s Sentinel-2 
ARD through the Open Data Cube 
python API 
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1) Create a finer-resolution map of LFMC in Australia at shorter cadence using Sentinel 
satellite observations. 

2) Obtain more accurate estimates of LFMC by integrating optical with synthetic aperture 
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reflectance data. The radiative transfer models are applied using a 16-day composite of MODIS 
data (MCD43A4 Version 6) at 500 m spatial resolution. Such a coarse resolution is acceptable for 
setting the national fire danger rating, but is too coarse to model fire behavior at smaller scales. A 
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data has the potential to make the LFMC measurement more reliable because its longer 
wavelength can penetrate through canopy to detect understory vegetation and it is also less 
sensitive to weather conditions. Here we use both Sentinel-1 and -2 composite data through a 
computer vision approach to estimate LFMC for a test region in the Australian Capital Territory. 
We also make recommendations on increasing the number and diversity of ground-truth FMC 
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In our work, we chose to access the Sentinel-2 Level-2 data through the Digital Earth Australia 
Sandbox, an implementation of the Open Data Cube housing Geoscience Australia’s Earth 
observation data. The Open Data Cube has a Python API that allows for the extraction and 
processing of raster data stored in its database. We chose to use the Sandbox as it provided easy 
access to processed Sentinel-2 data for our area and time of interest. We discuss our use of the 
Sandbox to acquire Sentinel-2 data in more detail below.  

Sentinel-2 captures 13 spectral bands, ranging from visible to short-wave infrared. We used the 
blue, green, red, vegetation red edge 1, near-infrared and shortwave infrared bands (bands 2, 3, 
4, 5, 8 and 11 respectively) as features for our models. From these, we calculated additional band 
index features, which can indicate physical properties. We calculated the normalised difference 
vegetation index (NDVI), the visible atmospherically resistant index (VARI) and the modified 
normalised difference water index (MNDWI). The first two are designed to highlight vegetation in 
the landscape, the final highlights water. All three are valuable in attempting to predict fuel 
moisture, making them informative features. 

Sentinel-1 

Sentinel-1 is another mission in the Copernicus programme, again consisting of two polar-orbiting 
satellites. Unlike Sentinel-2, the Sentinel-1 satellites transmit microwaves, then record how much 
of the outgoing signal was reflected back from the surface. Due to operating at longer 
wavelengths than visible light, these satellites pick up different features from the ground and can 
see through clouds. Because they actively send radiation, they can also operate at night. 
Sentinel-1 operates in the C-Band (central frequency of 5.405 GHz) and can transmit either 
vertically- or horizontally-polarised light; it then measures the phase and intensity of the reflected 
light in both polarisation bands. Between the two satellites, it has a revisit time of around 6 days.  

Sentinel-1 analysis ready data for Australia is not as readily available as Sentinel-2. Level-1  data 
from Sentinel-1 is provided through the Copernicus Hub. There are two products: Single Look 
Complex (SLC) and Ground Range Detected (GRD). SLC preserves phase information, whereas 
GRD only keeps intensity information. Phase information is typically used when measuring 
changes in height (through interferometry) and is not needed for our application. Sentinel-1 also 
has four observing modes, corresponding to different ground-coverage and resolution; we used 
data collected in the Interferometric Wide swath mode, which is the most commonly used 
configuration. 

We used Sentinel-1 GRD data that had been processed to a Level-2 backscatter product 
specifically for the Data Quest by Zheng-Shu Zhou from CSIRO. This involves multiple steps, 
including removing noise sources and applying calibration. The resulting output is a digital 
number (DN; unitless), which can be converted to the typical radar backscatter parameter ( )γ0  
through the equation . This is done for both polarisation bands, where0 (DN )γ0 = 1 × log10  
Sentinel-1 transmits vertically-polarised light, and receives either vertically-polarised light (VV 
band), or horizontally-polarised light (VH band). We use both of these as features in our model. 

 

Copernicus Hub  https://copernicus.nci.org.au/sara.
client/#/explore  

An online search interface that 
allows a user to query and access 
the European Space Agency’s 
Sentinel-2 ARD data (stored in 
Australia on the NCI). It can also 
be queried with a Python package. 

 

Globe-LFMC 

Live fuel moisture content (LFMC) measures the amount of water contained in live vegetation as a 
percentage of the vegetation’s dry mass. The Globe-LFMC database was established to provide a 
collection of the measurements from around the world, which could then be used to better 
calibrate algorithms attempting to predict LFMC from remote sensing measurements, such as in 
this work.  

The database is stored as a csv file and can be downloaded, and opened, with Excel or Python. It 
includes 161,717 LFMC measurements from 1,383 sampling sites in 11 countries. The most 
useful columns for this analysis are Country, Latitude, Longitude, Sampling date, Sampling year, 
Land Cover and LFMC value. After loading, the data can be filtered to show measurements for 
Australia only. 

Data Gaps 

The single biggest factor that restricts the generalising power of the model is the availability of 
ground-truth LFMC measurements. Currently, only 111 LFMC measurements are available 
post-2015 (the launch date of Sentinel-2), spread across two years (2015 and 2016) and three 
locations - all near Canberra.  

In addition, the availability of Sentinel-2 data was frequently compromised due to cloud presence. 
As such, long time gaps (> 20 days) between ground measurements and Sentinel-2 observations 
were common. Fuel moisture can vary on a timescale of hours, especially during hot weather or 
after rainfall, meaning such long observation gaps pose a severe threat to the capability of the 
model to learn the associations between remote sensing and ground truth data. 

If many more ground measurements of LFMC were available, spread over land and time, two 
problems would be solved: 1) the lack of ground truth observations close in time to satellite 
passes and 2) the poor sampling of a range of vegetation types and terrain, which leads to a 
model that is not generalizable.  

We note that since the Globe-LFMC measurements ceased, the Sentinel-2B satellite has been 
launched, doubling the number of passes over Australia and providing more opportunities to 
match data. 

[2] Level-2 Sentinel-1 SAR data was processed by CSIRO especially for the Data Quest. In the future it will be available 
from CloudStor. 

Data Exploration 

The nature of our dataset means that it’s valuable to understand how our observed variables 
relate to the fuel moisture content. In particular, examining how the different feature variables 

 

Data Product  Link 

Sentinel-2 Optical and NIR Imagery (Level-2, 
bottom of atmosphere corrected) 

https://docs.dea.ga.gov.au/setup/sandbox.ht
ml  

Sentinel-1 SAR (Level-2, Analysis Ready Data)  Custom-processed Level-2 data product [2] 

Globe-LFMC   https://www.nature.com/articles/s41597-019-
0164-9 
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model to learn the associations between remote sensing and ground truth data. 

If many more ground measurements of LFMC were available, spread over land and time, two 
problems would be solved: 1) the lack of ground truth observations close in time to satellite 
passes and 2) the poor sampling of a range of vegetation types and terrain, which leads to a 
model that is not generalizable.  

We note that since the Globe-LFMC measurements ceased, the Sentinel-2B satellite has been 
launched, doubling the number of passes over Australia and providing more opportunities to 
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from CloudStor. 

Data Exploration 
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correlate with fuel moisture content can give us insight into which features we select for our 
machine learning models. Variables with higher correlations should have good predictive power. 

Here we create scatter plots between each of the feature variables from Sentinel-2 and LFMC to 
quickly assess any existing correlations. We observe some correlation between our variables and 
the observed fuel moisture content. For example, higher normalised difference vegetation index 
(NDVI) values correspond to higher fuel moisture; this is consistent with higher NDVI values 
corresponding to healthy vegetation, and lower values corresponding to dry or dead vegetation. 
The scatter plots also reveal that there is significant scatter in the data, which is to be expected 
given our small sample. 

 

 

 

 

 

 

 

Figure 1: Plots of feature variables from Sentinel-2 optical data against the ground-based measurements of fuel 
moisture content (FMCObserved). The feature variables are: modified normalised water index (MNDWI), visual 
atmospheric resistance index  (VARI), optical red band (nbart_red), normalised difference vegetation index  (NDVI), 
optical blue band (nbart_blue), red-edge band  (nbart_red_edge_1), normalised difference water index  (NDWI), optical 
green band (nbart_green), shortwave infrared (nbart_swir_2). 

 

Methodology 

Workflow overview 

Our method involves individually processing each of our datasets then preparing them for 
ingestion into our regression modelling pipeline. For each Sentinel dataset, we identify data that 
falls within our areas of interest (the three sampling sites around Canberra) for the time period 
overlapping with available LFMC measurements (2015 to 2016). This is then matched against the 
available LFMC measurements to build a dataset that lists the Sentinel-1 and -2 observations 
closest in time and space to each LFMC measurement. This is  formatted as a table containing 
the satellite observations (feature variables) and the matched LFMC measurements (target 
variable). 

We then fit a number of models to the data and compare outcomes. We evaluate the models 
based on their root-mean-square error (RMSE) when fitted to testing data set aside from our main 
dataset. 

Sentinel-2 Pipeline 

We accessed Sentinel-2 data through the Digital Earth Australia Sandbox, a Python-based 
platform for Earth observation analysis. The DEA Sandbox was chosen as the most user-friendly 
and convenient method to access analysis-ready Sentinel-2 data for Australia. In particular, the 
sandbox provides a full environment to process the Sentinel data, with all modules installed and 
ready to use.  The LFMC data used in our analysis was collected from three sites, specified by 
latitude and longitude. We created shapefiles defining 100m by 100m areas around each site, 
matching the approximate collection area of the ground-truth measurements and providing a 
reasonable sample of pixels around the area of interest from Sentinel-2. 

We then loaded Sentinel-2 data between August 2015 and November 2016 (the dates covered by 
the LFMC samples). The Sandbox allowed us to retrieve specific Sentinel-2 bands, so we 
selected the blue, green, red, vegetation red edge 1, near-infrared and shortwave infrared bands 
(bands 2, 3, 4, 5, 8 and 11 respectively). We also required that the query only return observations 
where more than 80% of our area of interest was cloud free. This was to ensure we got a 
representative measurement of the area of interest. 

After loading the data, we also calculated three band indices as additional features. These were 
the normalised difference vegetation index (NDVI), the Visible Atmospherically Resistant Index 
(VARI) and the modified normalised difference water index (MNDWI). The first two are designed to 
highlight vegetation in the landscape, the final highlights water. All three are valuable in attempting 
to predict fuel moisture. 

Since the LFMC data is a single observation for each site and sampling date, we reduced the 
loaded Sentinel-2 data and calculated band indices to representative values by taking the spatial 
median across each loaded observation. This resulted in a single measurement of the loaded 
bands and indices for each observation, which we could use as features for our machine learning 
model. These features were saved to a csv, along with the date of observation, which is later used 
to match these observations to the LFMC values. 

Sentinel-1 Pipeline 

The Sentinel-1 data we used was provided in the form of GeoTIFF files for each observation, with 
one file for the VH band and one for the VV band. We loaded these using the GDAL package, and 
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falls within our areas of interest (the three sampling sites around Canberra) for the time period 
overlapping with available LFMC measurements (2015 to 2016). This is then matched against the 
available LFMC measurements to build a dataset that lists the Sentinel-1 and -2 observations 
closest in time and space to each LFMC measurement. This is  formatted as a table containing 
the satellite observations (feature variables) and the matched LFMC measurements (target 
variable). 

We then fit a number of models to the data and compare outcomes. We evaluate the models 
based on their root-mean-square error (RMSE) when fitted to testing data set aside from our main 
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Sentinel-2 Pipeline 

We accessed Sentinel-2 data through the Digital Earth Australia Sandbox, a Python-based 
platform for Earth observation analysis. The DEA Sandbox was chosen as the most user-friendly 
and convenient method to access analysis-ready Sentinel-2 data for Australia. In particular, the 
sandbox provides a full environment to process the Sentinel data, with all modules installed and 
ready to use.  The LFMC data used in our analysis was collected from three sites, specified by 
latitude and longitude. We created shapefiles defining 100m by 100m areas around each site, 
matching the approximate collection area of the ground-truth measurements and providing a 
reasonable sample of pixels around the area of interest from Sentinel-2. 

We then loaded Sentinel-2 data between August 2015 and November 2016 (the dates covered by 
the LFMC samples). The Sandbox allowed us to retrieve specific Sentinel-2 bands, so we 
selected the blue, green, red, vegetation red edge 1, near-infrared and shortwave infrared bands 
(bands 2, 3, 4, 5, 8 and 11 respectively). We also required that the query only return observations 
where more than 80% of our area of interest was cloud free. This was to ensure we got a 
representative measurement of the area of interest. 

After loading the data, we also calculated three band indices as additional features. These were 
the normalised difference vegetation index (NDVI), the Visible Atmospherically Resistant Index 
(VARI) and the modified normalised difference water index (MNDWI). The first two are designed to 
highlight vegetation in the landscape, the final highlights water. All three are valuable in attempting 
to predict fuel moisture. 

Since the LFMC data is a single observation for each site and sampling date, we reduced the 
loaded Sentinel-2 data and calculated band indices to representative values by taking the spatial 
median across each loaded observation. This resulted in a single measurement of the loaded 
bands and indices for each observation, which we could use as features for our machine learning 
model. These features were saved to a csv, along with the date of observation, which is later used 
to match these observations to the LFMC values. 

Sentinel-1 Pipeline 

The Sentinel-1 data we used was provided in the form of GeoTIFF files for each observation, with 
one file for the VH band and one for the VV band. We loaded these using the GDAL package, and 
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extracted the pixel corresponding to our sampling site locations by calculating the location of the 
site relative to the image’s coordinate bounds. The file names also contain the date and 
time-stamp of each observation, so we used text processing code to extract these.  

Sentinel-1 data is provided as a unitless digital number for each band. We converted it to the 
more commonly used radar backscatter coefficient, , by taking the base 10 logarithm of theγ0  
digital number and multiplying it by 10 (see Sentinel-1). We then wrote the backscatter values 
along with the date of observation to a comma-separated-variable (CSV) file to be matched by 
timestamp with the LFMC values.  

Data Preparation Pipeline 

To be useful for our machine learning workflow, we need to format the data into a table, with each 
feature variable from Sentinel-1 and -2, and the LFMC target variable as columns. Rows 
correspond to matched observations.  

To begin, we load the LFMC data and keep only observations from the Australian Capital Territory 
between January 2015 and December 2016. We then load the processed Sentinel-1 and -2 
datasets from the previous, and ensure that there is only one observation per row. 

For each LFMC observation, we then identify the Sentinel-1 and -2 observations that are closest 
in date and position, and record the matched values. We note the date differences between the 
LFMC and each Sentinel observation so that we can filter the matches to those that were within 
reasonable time of each other.  

Regression Modelling Pipeline 

We identified our task as a regression problem and fit the simplest linear regression model as our 
baseline. Then, we applied L1 and L2 regularizers to handle the overfitting issue. In addition, we 
applied nonlinear regression models to study our tasks, including random forest regression, 
K-nearest-neighbour regression, Bayesian ridge regression, multi-layer perceptron, linear support 
vector regression, and Tweedie regression with Gamma distribution. Table 1 summarises the 
properties of each regression algorithm, noting any significant advantages or pitfalls. 

 

Table 1: Properties of regression algorithms used to model the LFMC from SAR and optical 
images. 

Algorithm  Properties 

Linear Regression  Simplest baseline model, assumes linear relationships between 
features and target variable. 

Random Forest  A collection of individual decision trees that randomly use different 
features to predict the target variable. As an ensemble method, the 
decision trees “vote” on the predicted target variable, making the 
prediction more robust to errors than from an individual decision tree. 
The disadvantage is that these models can overfit the training data, and 
not generalise well to new examples. 

 

 

We applied a machine learning pipeline to compare different models fairly. We measured the 
average performance of each model via 5-fold cross validation. Within each fold’s experiment, we 
applied grid search methods to pick the best hyperparameters of a model in terms of model 
fitness.  

Results 

We present the results of fitting the seven algorithms to the data in Table 2 below. Simple linear 
regression models resulted in over-fitting, which we attempted to control using L1 and L2 
regularizers, leading to nine models for comparison. 

The matching window in time between the Sentinel satellites passing overhead and the date of 
the ground-truth measurements is critical for this analysis. Ideally this should be as short as 
possible so that the ground-truth measurements and satellite images are measuring the same 
moisture levels. However, the Sentinel-1 SAR observations for this time were relatively sparse 
meaning that a matching window of 26 days was necessary to provide a sufficiently large number 
of points to. We present the R-squared and RMSE values for time-filtered data and all data as a 
comparison. 

Comparison of fitting all data versus time-mathed data 

If we don’t restrict the time-matching window between S1 and S2 data, there are 111 data points 
available. We also choose a matching window (through trial-and-error) of less than 26 days, 
leaving 74 data points available for fitting. 

 

KNN Regression  This method predicts the target value of new points by locally 
interpolating the values of the point’s nearest neighbours. An 
advantage of KNN is the predicted values will be in the range of the 
target values from the training dataset. Thus, it may avoid predicting 
meaningless values. This is a simple algorithm, and easy to interpret, 
but may suffer when working with small training sets.  

Bayesian Ridge 
Regression 

A probabilistic model for regression problems. This can have a number 
of advantages, particularly around incorporating and predicting 
uncertainty. It can also work well for small datasets. This method can 
be time-consuming to run if the dataset is larger, and may not perform 
better than standard linear regression. 

Multi-layer 
Perceptron 

A simple neural network, with fully connected layers. Multi-layer 
perceptron models often perform well on complex datasets, but may 
take longer to train depending on the complexity of their architecture. 

Linear SVM 
Regression 

This model attempts to fit a line and decision boundary that captures 
the training data. As such, it may perform poorly on data with a large 
amount of scatter. 

Tweedie Regression 
with Gamma 
Distribution 

This model returns non-negative predictions, which is valuable here as 
our target variable must be non-negative given the definition of fuel 
moisture content. 

Table 2: Performance comparison when using all data points and data points with maximum 26 
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From the results in Table 2 we can see that the RMSE values are high and R-squared values low 
when fitting using all data points (e.g. <RMSE>All = 55.41 versus  <RMSE>Matched = 45.87 and 
<R2>All = 0.06 versus  <R2>Matched = 0.32). Thus we do not recommend performing regression 
without date-gap matching. When using the date-gap matching, we found that the multi-layer 
perceptron model had the highest R2, and had a reasonable RMSE value, with linear regression 
with L1 and LinearSVR having similar performance. 

Comparison between S1 and S2 data (time-matched only) 

We next restrict our analysis to only Sentinel-1 and -2 data that can be matched in a 26 day time 
window. To determine which of the S1 and S2 data dominate, we fit models to both SAR and 
optical data, and to each dataset individually and in combination. 

 

days between S1 and S2. For our chosen metrics, higher R2 and lower RMSE indicate better 
performance (indicated by the directional arrows after each metric name). The metrics for the 
best performing models are highlighted in bold text and underlined for similar performing 
models. 

  All data points  Date gap ≤ 26 days (74 data points) 

  R2 ↑  RMSE ↓  R 2 ↑  RMSE ↓ 

linear regression  0.06  56.51  0.32  45.25 

linear regression 
with L1 

0.06  54.38  0.30  47.47 

linear regression 
with L2 

0.07  55.41  0.38  40.12 

Tweedie Regressor 
with Gamma 
distribution  

0.03  54.43  0.19  47.80 

Bayesian Ridge 
Regressor 

0.06  52.72  0.31  46.87 

K-Neighbors 
Regressor 

0.01  56.45  0.32  45.87 

MultiLayer 
Perceptron  

0.06  59.61  0.43  41.64 

LinearSVR  0.07  55.24  0.38  40.76 

Random Forest 
Regressor 

0.07  58.12  0.24  47.32 

MEDIAN:  0.06 ± 0.02  55.41 ± 2.08  0.32 ± 0.07  45.87 ± 3.09 

 

There are 12 features in the combination: two from S1 (VV, VH) and ten from S2 (nbart_blue, 
nbart_green, nbart_red, nbart_nir_1, nbart_red_edge_1, nbart_swir_2, MNDWI,NDVI, NDWI, and 
VARI). We present the results in Table 3. 

 

From the results in Table 3, we see that: 

1. In general, models fit to the S2 data alone perform similar to the combination of S1 plus S2 
data. Most models fit to the S1 data alone perform poorly, which could be due to the 
higher number of features for S2 (10) compared to S1 (2), as well as the types of physical 
information these features capture.  

2. The best performing model is the  multi-layer perceptron, which achieved the highest 
R-squared and a reasonable RMSE on the combined S1 and S2 data. 

 

Table 3: Performance comparison when using data points with maximum date gap of 26 days 
between S1 and S2 data, and different combinations of features from each dataset. For our 
chosen metrics, higher R2 and lower RMSE indicate better performance (indicated by the 
directional arrows after each metric name). The metrics for the best performing models are in 
bold and underline, as before. 

  S1+ S2  S1  S2 

  R^2 ↑  rmse ↓  R^2 ↑  rmse ↓  R^2 ↑  rmse ↓ 

linear regression  0.32  45.25  0.22  51.72  0.37  41.47 

linear regression 
with L1 

0.30  47.47  0.07  52.78  0.31  46.54 

linear regression 
with L2 

0.38  40.12  0.11  51.94  0.37  41.45 
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3. The Random Forest Regressor outperformed all other algorithms on the S1 data alone, 
approaching the performance of models fit to the combined dataset. This suggests that 
the radar images have predictive value, but that care is needed in their use. 

 

Selecting Features via Regularisation 

The L1 and L2 regularisers apply penalties to the each of the features to constrain the model and 
avoid over-fitting. This allows the user to apply a threshold to the regularisation coefficients, 
dropping the least-important features. Similarly, the decision trees in the Random Forest method 
can assess the importance of each feature by position in the tree. In Table 4 below we present the 
results of models run on data with the least important features omitted. 

Using features selected by L1: 

The features selected by the L1 regulariser are VV, VH (S1 data) and nbart_blue, nbart_green, 
nbart_red, nbart_nir_1, nbart_red_edge_1, nbart_swir_2, I (S2 data). The dropped features are 
MNDWI, NDVI, NDWI, and VAR. 

 

From the results in Table 4, we see that when using the reduced feature set, linear regression with 
L2 regularisation is the best performing model. However, simple linear regression, LinearSVR and 
Random Forest display similar performance. This may indicate that linear-based models perform 
better for a smaller set of more correlated features. Even so, these models do not outperform the 
multi-layer perceptron when using all 12 features. If processing time became an issue when using 

 

Table 4: Performance comparison when using data points with maximum date gap 26 and 
features selected by L1 regularizer. For our chosen metrics, higher R2 and lower RMSE indicate 
better performance (indicated by the directional arrows after each metric name). The metrics 
for the best performing model are in bold. 

  R2 ↑  RMSE ↓ 

linear regression  0.38  39.84 

linear regression with L1  0.30  46.40 

linear regression with L2  0.39  39.92 

Tweedie Regressor with 
Gamma distribution  

0.30  45.57 

Bayesian Ridge Regressor  0.31  46.87 

K-Neighbors Regressor  0.32  45.87 

MultiLayer Perceptron   0.34  43.75 

LinearSVR  0.38  40.84 

Random Forest Regressor  0.37  41.68 

 

the multi-layer perceptron in future, this experiment might support using a simpler linear model 
with a reduced set of features, providing reasonable performance with a lower processing time. 

Qualitative results 

It is useful to examine the distribution of LFMC values and how the values are spread over the 
landscape. In Table 5 we compare the values and extent of LFMC for the Globe-LFMC target 
variable, the current state-of-the art AFMS and selected models from this work. 

 

Table 5: Histograms and spatial distributions of LFMC values for Globe LFMC, the AFMS and 
selected models from this work. 

  histogram of FMC values  predicted maps  

ground-truth 
(Globe-LFMC) 

 

 

AFMS 
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From Table 5, predicted values of the LFMC  (histogram column) vary significantly and generally 
have a greater spread than either the AFMS system or the Globe-FMC data. A few of the models 
also predict negative LFMC values, which are considered physically impossible, implying that the 
scale of typical LFMC values has not been well captured. Despite the large variance in values 
across models, the morphologies of the predicted maps are in reasonable agreement with the 
AFMS map, meaning that the models are able to detect differences in LFMC corresponding to 
differences in the landscape, such as dry grasslands and wetter forests.  

Discussion 

We compare the high-resolution LFMC prediction from our models to the MODIS-derived 
estimate used by the Australian Flammability Monitoring System. As mentioned above, predicted 
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LFMC values are considerably different between models and the ground truth. Some of the 
distributions appear reasonable in shape, but have negative values that are physically impossible. 
We believe that this is largely because of the sparse data available for analysis and the wide 
temporal gap between most ground-truth measurements and satellite passes. In short, the 
models are not well constrained by the current datasets. 

However, we believe the method is sound and is worth exploring further. In particular, the maps 
based on the S1 and S2 data show fine structures corresponding to ridges and valleys that 
appear reasonable. On average, the LFMC values of the two maps are similar, but the variance 
across the AFMS map is much greater. This difference in variances is partly due to very different 
LFMC estimates on some vegetation types. 

One reason behind such differences is the lack of available data spanning various vegetation 
types. No ground-truth measurements have been taken for fields, which limits the generalisation 
power of the model. However, generalisation across vegetation types may not be important when 
looking at LFMC, when vegetation type itself is a better indicator of flammability than LFMC 
(compare sclerophyll forest to pasturage). 

We saw mixed results about whether including S1 data alongside S2 resulted in better model 
performance. More work is required to understand the contribution that S1 data is making, and 
whether it can be enhanced by additional feature engineering, such as that used by Rao et al., 
2020. 

Next Steps and Recommendations 

Before further pursuing higher-resolution LFMC maps, we recommend assessing the importance 
and uncertainty of each data layer (LFMC vs topography vs vegetation type) to bushfire 
management. If LFMC resolution (rather than other LFMC uncertainties) is one of the bottlenecks 
to improving management, the defined resolution challenge can be further developed. 

As mentioned in the Data Gaps section, the biggest factor that affects the performance of the 
model across varying environments and conditions is the availability of LFMC data. If this 
research project is to be further developed in the future, the availability of ground-truth data is the 
first item that needs to be addressed. LFMC data should be collected over a wider variety of 
geographical locations and bioregions in dry to wet conditions. The biggest drawback to 
collecting more field data is that measuring LFMC is a long, rigorous process (collecting and 
weighing samples, retrieving to the lab, oven-drying at ~100℃ up to 2 days). Using the same 
collection method in the future is only likely to increase the availability of data 2 or 3 fold at most. 
While this will certainly be valuable, it might not lead to desired model performance. An alternative 
method would be to sacrifice some data quality for quantity. A citizen science project could be set 
up where people collect their own LFMC measurements. Other advantages of such an approach 
include the potential of continuous data gathering, including in active fire seasons. Potential 
LFMC proxies more easily measurable could include: leaf electrical conductance, leaf dielectric 
permittivity, leaf colour relative to colour templates, leaf mass to size ratio relative to templates 
and leaf-burning tests. 
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Appendix: Technical Requirements 

The processing power required by the machine learning pipeline is very low, owing to the small 
dataset and model simplicity. As such, it can be quickly run on off-the-shelf machines regardless 
of operating system. 

The training script was built using Python 3.8.5, and used the following libraries: 

● numpy==1.19.1 
● matplotlib==3.3.0 
● pandas==1.0.5 
● scikit-learn==0.23.1 

The disk space required for storing the S1 and S2 training data is less than 2 GB. 
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Abstract 
This paper presents an efficient machine learning approach to predict the burn probability and burn               

area of a bushfire as soon as the first ignition points are detected. This task is crucial in early mitigation of                     
fires before they develop into large-scale disasters. In order to address the challenges of this long-term                
prediction, we propose to define the task as an image segmentation problem. We use two variants of                 
encoder-decoder convolutional neural networks known as UNet and BASNet for this purpose. To increase              
the accuracy of our prediction in the absence of reliable fire ignition point ground truth, we propose to                  
sample random points from a burnt area. We show that by effectively fusing various data sources such as                  
Sentinel-2 imagery, different weather variables, historic fire data and others, we can achieve a high burn area                 
prediction accuracy of 88% on an unseen validation set and satellite images. Our method is one of the early                   
successful attempts to use image segmentation neural networks for the task of burn area prediction by                
utilising fire ignition points. This method can be used as a lightweight tool to provide real-time predictions                 
to help address resource management during the bushfire season. 

1. Introduction 
Wildfires, also known as bushfires, have become more frequent in the Australian landscape during the               

last 50 years [1,2]. This increasing trend is often related to various human activities and global warming.                 
With continuing climate change, population growth, and increased interaction between people and the             
landscape, researchers have witnessed an increase of flammable fuels, and thus, a higher risk of more                
catastrophic fire events. The impact of wildfire on human health, lives and property, and the natural                
environment can be devastating and long-lasting [1,3,4]. Every year in Australia, billions of dollars are spent                
on preventing wildfires, mitigating the effects of fires, and on fire management activities [5–7]. However,               
traditional firefighting methods are not sufficient to battle the biggest fires. The 2019-2020 fire season in                
Australia’s southeast was one of the worst the world had ever seen. Hundreds of fires burnt throughout the                  
summer and the lives of 34 people were lost. Over 3 billion animals were affected while over 18 million                   
hectares of the land were destroyed. Detecting fires soon after they form and predicting their behaviour are                 
critical tasks for managing bushfires, alongside mapping fire risk in the landscape in response to ignition                
events. Understanding fire behaviour will allow monitoring of influential parameters that make ignition             
more likely and lead to the rapid expansion of the fire front, flame height, intensity, and the overall severity                   
of the wildfire The risk associated with wildfires is a reflection of the availability of ignition sources, the                  
likelihood of vegetation to ignite, meteorological conditions, and the rate of spread after ignition [9]. 

The spread of fire is uncertain but is explained by the conditions of the vegetation, the weather, and                  
features of the landscape. Research has shown that the difference in moisture content over the landscape is                 
one of the most influential parameters in the behaviour of fire [9,10]. This relationship helps explain the rate                  
at which the fire moves over the land and enables researchers to estimate the possible extent of the burn area                    
[11]. The burn area, or fire scar, delivers not only important information about the severity of the fire [12],                   
but also helps us to understand why a particular area is affected and what led to this result. Thus, predicting                    
the probability of the burn area in the landscape can provide helpful information to apply better forest                 
management, predict the behaviour of a fire, and appropriately respond to fires [11,13–15]. Learning from               
historic fire events and analysing the vegetation, weather and terrain circumstances in the lead-up to these                
fires helps us understand past events and predict bushfires in the future. 

Satellites and remotely sensed images can help us detect and map burn areas. Several contemporary               
satellites have onboard dedicated sensors to monitor vegetation and changes in the landscape [16]. However,               
because of their location above the atmosphere, there are limitations on the resolution of the images,                
interference from clouds and gaps in coverage due to the time satellites need to circle the globe. [17–19].                  
Different satellites deliver different data products and combining these can improve the performance of              
remotely sensed data products that aim to detect wildfires rapidly and predict the behaviour of fires.                
Knowing the possible burn area of fire from the moments it ignites is useful information in a targeted                  
approach of fire response teams. 

Unfortunately, it takes time for a satellite to orbit the world and detect a fire. It also takes time for                    
scientists to predict the path of the fire, often using outdated fire behaviour models. The delay is                 
compounded by the time taken for fire crews to reach the fire front by land or air - valuable time we often do                       
not have. That is where the use of machine learning (ML) and artificial intelligence (AI) plays a crucial role.                   
Handling data derived from specialist satellites, interpreting weather patterns and accounting for the effect              

of terrain, and vegetation is time-consuming and needs more than a well-trained eye to identify anomalies.                
Thus, wildfire science and management rely on improved statistical capability, extra compute power, and              
the ability to identify complex relationships among data inputs [4,16]. With ML we can program a computer                 
to learn to predict future fire events and how they behave [16]. Only recently has ML been deployed in the                    
prediction of the burn area and fire occurrence in the landscape [11,20–24]. 

The research described in this document aims to deliver a proof-of-concept method for the prediction of                
the burn area as a result of wildfires in Australia. Thereby, it utilizes satellite-derived images as predictors of                  
the vegetation, digital elevation models as predictors of the topography, meteorological databases for             
weather predictors, and lastly, historic wildfire events (burnt areas) to train an ML model to make                
predictions of future burn area with high accuracy. The model distinguishes between the probability of the                
burn area prediction in case of fire ignition. 

1.1. Identified Needs and Opportunities  

In this study, we identify the need to develop a fast and accurate prediction of the burn area in the event                     
of fire ignitions using ML techniques and advanced data processing. In particular, we aim to correlate the                 
occurrence of historic fire scars with vegetation, topographic and weather variables and hope to interpret               
these circumstances to predict the burn area of fires using ML in the future. Being able to predict the possible                    
impact of fire if an ignition were to happen based on Sentinel-2 images, weather elements, and elevation                 
aspects of landscape, offers rapid insight into the possible damage, vulnerabilities, and direction for fire               
expansion. This information is currently missing in the Australian context and can improve targeted              
fire-response and pre-fire hazard reduction. 

Current state-of-the-art has explored the use of ML for burn area prediction in the landscape based on                 
susceptibility [20,25,26] or under the conditional occurrence of ignition of one or more wildfires              
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Landsat 8 [31], or Landsat 7 [15]. The satellite products are often low in spatial resolution (MODIS) or have a                    
low temporal resolution by which they only revisit a single location every 8-16 days (Landsat 7-8). Taking                 
the knowledge from these studies [11,15,20,25,31], and linking them with Sentinel-2 imagery, delivers higher              
combined spatial (20 m) and temporal resolution (5 days). 

The concept designed in this research adds promising knowledge to the existing literature and enables               
future research opportunities. The outcome of burn area prediction can be improved with the inclusion of                
more parameters influencing wildfires. In particular, including the spread of fire ignition points would add               
significant accuracy to the prediction of the burn area. The step-by-step development of fires between the                
first ignition and the total burn area predicted in this research will allow researchers to look more closely at                   
the circumstances during the evolving fire, and thus the behaviour. In this study, the ability of multispectral                 
satellite imagery, elevation, historic fire frequency and climate data to predict burn probability is tested. 

2. Data description 
 



D ATA Q U E S T 2 02 0  ·  6 5

Abstract 
This paper presents an efficient machine learning approach to predict the burn probability and burn               

area of a bushfire as soon as the first ignition points are detected. This task is crucial in early mitigation of                     
fires before they develop into large-scale disasters. In order to address the challenges of this long-term                
prediction, we propose to define the task as an image segmentation problem. We use two variants of                 
encoder-decoder convolutional neural networks known as UNet and BASNet for this purpose. To increase              
the accuracy of our prediction in the absence of reliable fire ignition point ground truth, we propose to                  
sample random points from a burnt area. We show that by effectively fusing various data sources such as                  
Sentinel-2 imagery, different weather variables, historic fire data and others, we can achieve a high burn area                 
prediction accuracy of 88% on an unseen validation set and satellite images. Our method is one of the early                   
successful attempts to use image segmentation neural networks for the task of burn area prediction by                
utilising fire ignition points. This method can be used as a lightweight tool to provide real-time predictions                 
to help address resource management during the bushfire season. 

1. Introduction 
Wildfires, also known as bushfires, have become more frequent in the Australian landscape during the               

last 50 years [1,2]. This increasing trend is often related to various human activities and global warming.                 
With continuing climate change, population growth, and increased interaction between people and the             
landscape, researchers have witnessed an increase of flammable fuels, and thus, a higher risk of more                
catastrophic fire events. The impact of wildfire on human health, lives and property, and the natural                
environment can be devastating and long-lasting [1,3,4]. Every year in Australia, billions of dollars are spent                
on preventing wildfires, mitigating the effects of fires, and on fire management activities [5–7]. However,               
traditional firefighting methods are not sufficient to battle the biggest fires. The 2019-2020 fire season in                
Australia’s southeast was one of the worst the world had ever seen. Hundreds of fires burnt throughout the                  
summer and the lives of 34 people were lost. Over 3 billion animals were affected while over 18 million                   
hectares of the land were destroyed. Detecting fires soon after they form and predicting their behaviour are                 
critical tasks for managing bushfires, alongside mapping fire risk in the landscape in response to ignition                
events. Understanding fire behaviour will allow monitoring of influential parameters that make ignition             
more likely and lead to the rapid expansion of the fire front, flame height, intensity, and the overall severity                   
of the wildfire The risk associated with wildfires is a reflection of the availability of ignition sources, the                  
likelihood of vegetation to ignite, meteorological conditions, and the rate of spread after ignition [9]. 

The spread of fire is uncertain but is explained by the conditions of the vegetation, the weather, and                  
features of the landscape. Research has shown that the difference in moisture content over the landscape is                 
one of the most influential parameters in the behaviour of fire [9,10]. This relationship helps explain the rate                  
at which the fire moves over the land and enables researchers to estimate the possible extent of the burn area                    
[11]. The burn area, or fire scar, delivers not only important information about the severity of the fire [12],                   
but also helps us to understand why a particular area is affected and what led to this result. Thus, predicting                    
the probability of the burn area in the landscape can provide helpful information to apply better forest                 
management, predict the behaviour of a fire, and appropriately respond to fires [11,13–15]. Learning from               
historic fire events and analysing the vegetation, weather and terrain circumstances in the lead-up to these                
fires helps us understand past events and predict bushfires in the future. 

Satellites and remotely sensed images can help us detect and map burn areas. Several contemporary               
satellites have onboard dedicated sensors to monitor vegetation and changes in the landscape [16]. However,               
because of their location above the atmosphere, there are limitations on the resolution of the images,                
interference from clouds and gaps in coverage due to the time satellites need to circle the globe. [17–19].                  
Different satellites deliver different data products and combining these can improve the performance of              
remotely sensed data products that aim to detect wildfires rapidly and predict the behaviour of fires.                
Knowing the possible burn area of fire from the moments it ignites is useful information in a targeted                  
approach of fire response teams. 

Unfortunately, it takes time for a satellite to orbit the world and detect a fire. It also takes time for                    
scientists to predict the path of the fire, often using outdated fire behaviour models. The delay is                 
compounded by the time taken for fire crews to reach the fire front by land or air - valuable time we often do                       
not have. That is where the use of machine learning (ML) and artificial intelligence (AI) plays a crucial role.                   
Handling data derived from specialist satellites, interpreting weather patterns and accounting for the effect              

of terrain, and vegetation is time-consuming and needs more than a well-trained eye to identify anomalies.                
Thus, wildfire science and management rely on improved statistical capability, extra compute power, and              
the ability to identify complex relationships among data inputs [4,16]. With ML we can program a computer                 
to learn to predict future fire events and how they behave [16]. Only recently has ML been deployed in the                    
prediction of the burn area and fire occurrence in the landscape [11,20–24]. 

The research described in this document aims to deliver a proof-of-concept method for the prediction of                
the burn area as a result of wildfires in Australia. Thereby, it utilizes satellite-derived images as predictors of                  
the vegetation, digital elevation models as predictors of the topography, meteorological databases for             
weather predictors, and lastly, historic wildfire events (burnt areas) to train an ML model to make                
predictions of future burn area with high accuracy. The model distinguishes between the probability of the                
burn area prediction in case of fire ignition. 

1.1. Identified Needs and Opportunities  

In this study, we identify the need to develop a fast and accurate prediction of the burn area in the event                     
of fire ignitions using ML techniques and advanced data processing. In particular, we aim to correlate the                 
occurrence of historic fire scars with vegetation, topographic and weather variables and hope to interpret               
these circumstances to predict the burn area of fires using ML in the future. Being able to predict the possible                    
impact of fire if an ignition were to happen based on Sentinel-2 images, weather elements, and elevation                 
aspects of landscape, offers rapid insight into the possible damage, vulnerabilities, and direction for fire               
expansion. This information is currently missing in the Australian context and can improve targeted              
fire-response and pre-fire hazard reduction. 

Current state-of-the-art has explored the use of ML for burn area prediction in the landscape based on                 
susceptibility [20,25,26] or under the conditional occurrence of ignition of one or more wildfires              
[4,22,24,27–30]. However, none of these approaches has been applied in the Australian context which has,               
compared to the rest of the world, a unique combination of weather patterns and vegetation types. The                 
direct use of satellite images in ML for burn area prediction is limited to applications of MODIS [11,20,25],                  
Landsat 8 [31], or Landsat 7 [15]. The satellite products are often low in spatial resolution (MODIS) or have a                    
low temporal resolution by which they only revisit a single location every 8-16 days (Landsat 7-8). Taking                 
the knowledge from these studies [11,15,20,25,31], and linking them with Sentinel-2 imagery, delivers higher              
combined spatial (20 m) and temporal resolution (5 days). 

The concept designed in this research adds promising knowledge to the existing literature and enables               
future research opportunities. The outcome of burn area prediction can be improved with the inclusion of                
more parameters influencing wildfires. In particular, including the spread of fire ignition points would add               
significant accuracy to the prediction of the burn area. The step-by-step development of fires between the                
first ignition and the total burn area predicted in this research will allow researchers to look more closely at                   
the circumstances during the evolving fire, and thus the behaviour. In this study, the ability of multispectral                 
satellite imagery, elevation, historic fire frequency and climate data to predict burn probability is tested. 

2. Data description 
 



6 6  ·  D ATA Q U E S T 2 02 0

 
The study area was located in the eastern part of New South Wales (NSW) and covered an area of                   

approx. 30,000 km2 (see Figure 1). The satellite imagery consisted of Sentinel-2 multispectral imagery and               
was downloaded from the Sentinel Australasia Regional Access (SARA) Data Hub. Sentinel-2 imagery has a               
spatial resolution of 10 - 20 m and temporal cadence between satellite revisits of up to 5 days. Sentinel-2                
Level-2A data products (i.e. bottom-of-atmosphere reflectance) were downloaded for the period from            
December 2018 to July 2020 for three 100 km x 100 km tiles (labelled T56HKJ, T56HKH and T56HKG). The 10                    
spectral bands of Sentinel-2 imagery were cloud and cloud shadow masked and resampled to 20 m spatial                 
resolution. 

Shuttle Radar Topography Mission (SRTM)-derived digital elevation model (DEM) at 30 m resolution             
was downloaded from the NSW Department of Planning, Industry and Environment Data Portal. The DEM               
was further resampled to 20 m to match the Sentinel-2 imagery. 

The fire history layer was extracted from the NSW Department of Planning, Industry and Environment               
Data Portal in vector format. This dataset contains information on fire extent and temporal length of all                 
recorded wildfires, and prescribed burns, between 1902 and 2020 across NSW. The fire history between 1902                
and 2018 was rasterized to create a fire frequency layer and was also resampled to 20 m resolution, matching                   
the Sentinel-2 imagery. 

Climate data were downloaded from the database of Australian climate data (SILO) in the period from                
December 2018 to July 2020. There were seven weather variables included in the analysis that were identified                 
as potential influential factors that can increase the probability of bushfire ignition. These data at 5 km                 
spatial resolution contained daily averages for (1) solar exposure consisting of both direct and diffuse               
components (in units of MJ/m2), (2) maximum temperature (ºC), (3) Moreton’s areal actual             
evapotranspiration (mm), (4) vapour pressure (hPA), (5) relative humidity at the time of maximum              
temperature (%), as well as daily totals of (6) class A pan evaporation (mm) and (7) rainfall (mm). 

2.1. Data Gaps 

The Data Quest is exploratory in nature and a significant outcome is to identify the ‘gaps’ in the input                   
data. In other words, is there a need for specific (and realistically attainable) data that would drastically                 
improve the outcomes of the project? 

1) Temporal maps of ignition points would have greatly improved the predictive powers of this work.               
A large ignition point dataset was previously accessible via the NSW Department of Planning,              
Industry and Environment Data Portal. However, this was unfortunately not available at the time of               
this study as it had been withdrawn from the public domain due to issues with data quality and                  

 

Figure 1: The area under study comprises three        
100 km x 100 km Sentinel-2 tiles covering a region      
immediately west of Sydney. 

currency. The Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m thermal anomalies / active              
fire product available from 20 January 2012 to the present through NASA’s Fire Information for               
Resource Management System was also investigated in this study. Unfortunately, it was deemed             
unsuitable due to low spatial resolution (i.e. 375 m) and inability to differentiate ignition points from                
individual hotspot/fire pixels. 

2) The wind is a major driver of fires meaning that accurate and high-resolution data on wind speed                 
and direction is a critical input to models of fire spread. Wind information is accessible on request                 
from the Bureau of Meteorology but was not utilized in this research because of time constraints.                
Additionally, the resolution of the available gridded wind data is low, likely due to the very sparse                 
distribution of weather stations in the landscape. The wind can change direction and speed multiple               
times over the course of the fire, making it difficult to choose a single measurement for each                 
individual fire. Rather, models should take into account the temporal weather changes and leverage              
these for inference. 

3) A finer grid of climate measurements could have been generated by downloading climate             
information from the database of Australian climate data (SILO) for individual stations spread             
across the study area and interpolating them through co-kriging, in conjunction with DEM             
information to a finer grid than 5 km. However, this was not attempted because of time constraints. 

3. Methodology 
Our approach was to train image segmentation models using a data-stack of Sentinel-2 images,              

rasterized weather and climate measurements, gridded DEM data and historic burn area outlines. The burn               
area data was used to make ‘ground-truth’ binary masks that were the target variable when training the                 
models. The two models chosen for this work were UNet (https://arxiv.org/abs/1505.04597) - a well-studied              
semantic segmentation convolutional neural network (CNN) - and BASNet         
(https://ieeexplore.ieee.org/document/8953756) - a newer refinement of the UNet architecture that focuses on            
correctly predicting boundaries.  

3.1. Workflow overview 
Figure 2 shows a schematic of the inputs used to train our models. Note the difference between the two                   

model’s inputs and output predictions. 
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3.1.1. Response variables 
Individual burn scars within each Sentinel-2 tile extent (T56HKJ, T56HKH, T56HKG) between 16             

December 2018 and 3 July 2020 were rasterized at 20 m resolution to generate binary masks of non-burned                  
(0) and burned (1) areas and were used as response variables. Within the study area, there were in total of                    
130 burn scars that originated from wildfires and prescribed burns in this period.  

 

Figure 2: Flow diagram showing the training inputs to the BASNet segmentation model. Sentinel-2              
imagery from 28 days prior to training fired is assembled into a cloud-free pre-fire mosaic. Fire history                 
data is transformed in a fire frequency heat map and weather data is assembled into a cumulative pre-fire                  
mosaic giving average conditions on the day of the fire. The response variable is a binary mask of burnt /                    
non-burnt areas generated from the fire history dataset. The model outputs a map of ‘burn probability’. 

 

3.1.2. Predictor variables 
Both the fire frequency layer and SRTM-derived DEM were directly used as predictors of burn               

probability. In contrast, to generate cloud-free composites of satellite imagery, cumulative mosaics of             
Sentinel-2 imagery were created using all images 28 days prior to each fire event. Pixel values feeding into                  
each mosaic were chosen from the time of maximum normalized difference vegetation index (NDVI). That               
is, a Sentinel-2 mosaic was derived by selecting pixel values of each band that corresponded to the maximum                  
NDVI of all Sentinel-2 images in a 28 days period prior to each fire event. 

Similarly, to take temporal information into account, daily averages of climate data were further              
cumulatively averaged, while daily totals were cumulatively summed in the period of 28 days prior to each                 
fire event. 

3.2. Burn Probability Prediction 
In order to predict a probability (e.g. risk) of burning for every single 20 m x 20 m pixel in the Sentinel-2                      

images, we build upon the UNet segmentation architecture. We modify the input layer to feed a stack of 14                   
channels of data: 10 channels from the Sentinel-2 image, relative humidity, evapotranspiration, maximum             
temperature within a defined period of time before the start of the fire and digital elevation. We train the                   
model using Cross-Entropy loss to predict the scars associated with each input stack. We use Adam                
optimization to train our model.  

3.3. Burn Area Prediction 
The previous model is able to correctly learn to associate a burn probability to each pixel based on its                   

different features related to the amount of fuel, the topography of the region and pre-fire history of weather                  
variables, however, we empirically observed that it has a limited capacity to predict the exact boundary of                 
the burn area. This limitation is mainly due to the loss function used to optimize the model. The loss                   
function treats all the wrong predictions equally in them irrespective of their location and proximity to the                 
actual burn area. In order to address this, we used a further developed version of UNet known as BASNet.                   
The new model is relatively similar in terms of architecture to the UNet model. The main difference,                 

Figure 3: Examples of fire scar data, distributed as closed polygons that outline the burnt area. Note                 
that the scar outline sometimes does not correspond to the burnt area (which is larger) because multiple                 
fire events merged to form a blended scar area (right-most panel) 

 

Figure 4: Illustration of how images from a 28-day window are used to build a cloud-free image of                  
the landscape, as seen by Sentinel-2. 
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however, is the incorporation of Structural SIMilarity (SSIM) and Intersection over Union (IoU) objectives              
that help limit the burn area prediction as a single unified area. We use the new model with the same input                     
stack to predict the burn area. 

3.4. Ignition Point Sampling 
There are other confounders that influence the burn area of a fire. For instance, the human intervention,                 

weather variables during the fire and most importantly the points where the fire starts from, e.g. ignition                 
points. The prediction of the final burn area in the absence of these confounders is an uncertain prediction. In                   
order to address the lack of the above-mentioned data sources, we propose to sample ignition points from                 
the burn area. Intuitively, we assume every single point in the fire scar has an equal probability of being an                    
ignition point. During training, we uniformly sample five ignition points and feed the points as an extra                 
channel added to the input stack of images. This way we condition our model’s burn area prediction on the                   
configuration of these ignition points. In practice, we can use real-time detection of ground-truth ignition               
points to replace the pseudo-ignition point created by our model for more accurate burn area prediction. 

3.5. Multi-Step Burn Area Prediction 
Conditioning our model on the ignition points not only increases the burn area prediction accuracy but                

it also endows extra capabilities to it. One common scenario in a real bushfire is that new ignition points are                    
detected as the fire front develops. Therefore, it is desirable for any predictive model to be able to update its                    
predictions over time given the new contextual information. This context in our case is the configuration of                 
the observed ignition points. By adding the newly detected ignition points overtime to the set of previously                 
observed ones and rerunning the model we can produce new burn area predictions. In order to showcase                 
this capability, we simulate such a scenario by using a sampling method. In our method, we assume a                  
Gaussian distribution of unit standard deviation around each observed ignition point. As we observe more               
ignition points, we add new distributions to the mixture of Gaussians. We continue sampling new ignition                
points from the previous distribution and adding the new sample to the previous set of points. This way we                   
simulate a real scenario by assuming that the points closer to one of the previous ignition points have a                   
higher probability of burning. Using this method, we can generate a multi-step fire development map. 

In practice, we can add further priors to the ignition sampling method like the proximity to fire combat                  
units, urban areas, water resources etc. Additionally, we can feed actual ignition points as we detect them                 
using other methods, whether using other remote sensing measures or on the ground observation units. 

4. Results and Discussion 
Figure 5 shows the results produced by the UNet model when applied to a previously unseen                

geographic location. In this figure, we can see that our model is able to associate a high burning probability                   
to the areas (mainly in the middle) that were mostly burnt after the fire. 

 

 

Figure 5: The left panel shows the true-colour Sentinel-2 image of a region on the outskirts of Sydney                  
that was not included in the training data. This pre-fire image is used to make the prediction. The middle                   

Figure 6 below shows the results produced by our final model, e.g. BASNet including the ignition point                 
sampling method. The model is able to accurately predict the burn area. We achieved an overall pixel-wise                 
accuracy of 88% on an unseen validation set. 

 

5. Next Steps and Recommendations 
In order to improve the burn probability and burn area prediction results, the following list of                

recommendations is discussed: 
1) Incorporate fire ignition data from VIIRS or other data sources.  

In this study, it was highlighted that both in the data collection as well as the workflow, additional                  
ignition data would be helpful. In the current research, ignition points were assumed and randomly               
sampled for the burn area prediction. There is no reliable data on ignition points, which would                
improve the accuracy of predictions and enable further research into the spread and of fires over the                 
landscape. A classification of ignition data would also be helpful in understanding the nature of               
bushfires. Lightning strikes form a major component of ignition data, which are currently not              
available in the public domain. 

2) Clean/Verify the fire history data. 
As indicated in Figure 3, some of the historic fire scars do not match the corresponding Sentinel-2                 
imagery. This was most prevalent in the small fires. Larger fires were often segmented in geospatial                
format and needed extra processing. To enhance the readiness of the data, historic fire events should                
undergo additional verification with satellite imagery to cross-check the boundary and level of             
overlap and spacing when segmented. 

3) Incorporate wind information during fire events. 
In this study, we acknowledge the complex behaviour of wind as a predictor weather variable. It is                 
highlighted that additional models would be required to investigate the direction and speed of wind               
during fire events. The wind is an important parameter that highly influences the speed and               

panel shows the same image overlaid by the burn probability map produced by the UNet model. The                 
pattern of squares seen in the map is an artefact of the coarsely gridded climate data. The right panel shows                    
the post-fire Sentinel-2 image. Note the extensive burn scar (brown) and that green vegetation has sprung                
up after consecutive rain events. 

 

Figure 6: The left panel shows the true-colour Sentinel-2 image of a region on the outskirts of Sydney                  
that was not included in the training data, before the fire. The right panel shows the same image overlaid                   
by the predicted burn area (red dotted boundary) compared to the ground-truth burn area (white               
boundary). Our ignition sampling method in conjunction with BASNet is able to produce accurate burn               
area predictions. 
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that help limit the burn area prediction as a single unified area. We use the new model with the same input                     
stack to predict the burn area. 

3.4. Ignition Point Sampling 
There are other confounders that influence the burn area of a fire. For instance, the human intervention,                 

weather variables during the fire and most importantly the points where the fire starts from, e.g. ignition                 
points. The prediction of the final burn area in the absence of these confounders is an uncertain prediction. In                   
order to address the lack of the above-mentioned data sources, we propose to sample ignition points from                 
the burn area. Intuitively, we assume every single point in the fire scar has an equal probability of being an                    
ignition point. During training, we uniformly sample five ignition points and feed the points as an extra                 
channel added to the input stack of images. This way we condition our model’s burn area prediction on the                   
configuration of these ignition points. In practice, we can use real-time detection of ground-truth ignition               
points to replace the pseudo-ignition point created by our model for more accurate burn area prediction. 

3.5. Multi-Step Burn Area Prediction 
Conditioning our model on the ignition points not only increases the burn area prediction accuracy but                

it also endows extra capabilities to it. One common scenario in a real bushfire is that new ignition points are                    
detected as the fire front develops. Therefore, it is desirable for any predictive model to be able to update its                    
predictions over time given the new contextual information. This context in our case is the configuration of                 
the observed ignition points. By adding the newly detected ignition points overtime to the set of previously                 
observed ones and rerunning the model we can produce new burn area predictions. In order to showcase                 
this capability, we simulate such a scenario by using a sampling method. In our method, we assume a                  
Gaussian distribution of unit standard deviation around each observed ignition point. As we observe more               
ignition points, we add new distributions to the mixture of Gaussians. We continue sampling new ignition                
points from the previous distribution and adding the new sample to the previous set of points. This way we                   
simulate a real scenario by assuming that the points closer to one of the previous ignition points have a                   
higher probability of burning. Using this method, we can generate a multi-step fire development map. 

In practice, we can add further priors to the ignition sampling method like the proximity to fire combat                  
units, urban areas, water resources etc. Additionally, we can feed actual ignition points as we detect them                 
using other methods, whether using other remote sensing measures or on the ground observation units. 

4. Results and Discussion 
Figure 5 shows the results produced by the UNet model when applied to a previously unseen                

geographic location. In this figure, we can see that our model is able to associate a high burning probability                   
to the areas (mainly in the middle) that were mostly burnt after the fire. 

 

 

Figure 5: The left panel shows the true-colour Sentinel-2 image of a region on the outskirts of Sydney                  
that was not included in the training data. This pre-fire image is used to make the prediction. The middle                   

Figure 6 below shows the results produced by our final model, e.g. BASNet including the ignition point                 
sampling method. The model is able to accurately predict the burn area. We achieved an overall pixel-wise                 
accuracy of 88% on an unseen validation set. 

 

5. Next Steps and Recommendations 
In order to improve the burn probability and burn area prediction results, the following list of                

recommendations is discussed: 
1) Incorporate fire ignition data from VIIRS or other data sources.  

In this study, it was highlighted that both in the data collection as well as the workflow, additional                  
ignition data would be helpful. In the current research, ignition points were assumed and randomly               
sampled for the burn area prediction. There is no reliable data on ignition points, which would                
improve the accuracy of predictions and enable further research into the spread and of fires over the                 
landscape. A classification of ignition data would also be helpful in understanding the nature of               
bushfires. Lightning strikes form a major component of ignition data, which are currently not              
available in the public domain. 

2) Clean/Verify the fire history data. 
As indicated in Figure 3, some of the historic fire scars do not match the corresponding Sentinel-2                 
imagery. This was most prevalent in the small fires. Larger fires were often segmented in geospatial                
format and needed extra processing. To enhance the readiness of the data, historic fire events should                
undergo additional verification with satellite imagery to cross-check the boundary and level of             
overlap and spacing when segmented. 

3) Incorporate wind information during fire events. 
In this study, we acknowledge the complex behaviour of wind as a predictor weather variable. It is                 
highlighted that additional models would be required to investigate the direction and speed of wind               
during fire events. The wind is an important parameter that highly influences the speed and               

panel shows the same image overlaid by the burn probability map produced by the UNet model. The                 
pattern of squares seen in the map is an artefact of the coarsely gridded climate data. The right panel shows                    
the post-fire Sentinel-2 image. Note the extensive burn scar (brown) and that green vegetation has sprung                
up after consecutive rain events. 

 

Figure 6: The left panel shows the true-colour Sentinel-2 image of a region on the outskirts of Sydney                  
that was not included in the training data, before the fire. The right panel shows the same image overlaid                   
by the predicted burn area (red dotted boundary) compared to the ground-truth burn area (white               
boundary). Our ignition sampling method in conjunction with BASNet is able to produce accurate burn               
area predictions. 
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direction of the moving fire front. Measures of wind will influence the prediction of the burn area                 
and can further enhance fire behaviour models. 

4) Validation of predictions with other burn area indicators. 
Even though high accuracy in the prediction was achieved using the above-mentioned methods,             
extensive validation of the models should be performed before deploying the models in field              
situations. For example, as a proxy for vegetation, satellite-derived data was used, however, no              
additional data-processing was performed to indicate the dryness of fuel on the forest floor. To               
validate the accuracy of satellite data, it is worth comparing imagery derived fuel moisture content               
versus field measures of moisture content. These measures are also highly seasonal and vary              
through the different layers in the forest. 

As a general comment, we can highlight that increased accuracy in the data would increase the accuracy                 
in the prediction. Moving forward, the next logical step would be in-field validation of the prediction.                
Thereby we could compare the prediction of a burn area if an ignition were to happen, with field                  
measurements of moisture content and flammability. As we expand the model beyond the three sentinel tiles                
selected for this study, we will require additional validation with natural fire boundaries such as water                
bodies and infrastructure, as these will influence the burn area. By expanding the study area, to the whole of                   
Australia, the accuracy of the models will need to be validated with changes in the vegetation. Currently, the                  
models are tested on forested areas within the “bushfire” topic, however, the likeness of fires to originate                 
and expand over other vegetation types such as savannah and grassland should be incorporated. Thus,               
additional time and resources will be required to further validate and implement the tool. 

The applied methods and possible application hold great promise for future research. Not only, were               
promising results discussed, and were first steps into the validation made. The tool has obvious utilization,                
pre- and during fire events. Pre-fire, high-risk areas can be assessed on the basis an ignition would happen at                   
any time from the latest satellite image. This can inform forest management crews ahead of possible fires                 
about the possible damage caused by fires and the area it could consume. During fires, when the ignition                  
point is recorded, the model can more accurately predict the direction, extent and boundary of the fire                 
within seconds. This can inform fire crews where to interfere to prevent further spreading. Additionally, the                
tool can be integrated with fuel moisture content models, using improved moisture content measures in the                
field to enhance the predictions. With the correct ignition data at the start and during the fire, the methods                   
can be employed to predict the behaviour of fires during the fire, with an accurate prediction of the                  
direction, speed and flame height of fires based on the current conditions. Additional data sources such as                 
lightning strikes and wind data are critical. 

6. Appendix: Technical Requirements 
We use the PyTorch deep learning package for all our models. Both our models are trained on patches                  

of 256x256 pixels on 20 m resolution. We use a batch size of 20, the learning rate of 1e-4 and weight decay                      
regularisation of 1e-4 for training. We crop the input tiles into patches with a stride of 64 pixels. For inference,                    
we use a larger patch size of 512x512 pixels. Finally, we stitch the small patch predictions using a sliding                   
window averaging method combined with boundary Spline weighting. 

Our model takes 10~12 hours to train on the whole training set of ~100 Sentinel-2 tiles using 2 V100                   
GPUs. Source code is available on Gitlab. 
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extensive validation of the models should be performed before deploying the models in field              
situations. For example, as a proxy for vegetation, satellite-derived data was used, however, no              
additional data-processing was performed to indicate the dryness of fuel on the forest floor. To               
validate the accuracy of satellite data, it is worth comparing imagery derived fuel moisture content               
versus field measures of moisture content. These measures are also highly seasonal and vary              
through the different layers in the forest. 

As a general comment, we can highlight that increased accuracy in the data would increase the accuracy                 
in the prediction. Moving forward, the next logical step would be in-field validation of the prediction.                
Thereby we could compare the prediction of a burn area if an ignition were to happen, with field                  
measurements of moisture content and flammability. As we expand the model beyond the three sentinel tiles                
selected for this study, we will require additional validation with natural fire boundaries such as water                
bodies and infrastructure, as these will influence the burn area. By expanding the study area, to the whole of                   
Australia, the accuracy of the models will need to be validated with changes in the vegetation. Currently, the                  
models are tested on forested areas within the “bushfire” topic, however, the likeness of fires to originate                 
and expand over other vegetation types such as savannah and grassland should be incorporated. Thus,               
additional time and resources will be required to further validate and implement the tool. 

The applied methods and possible application hold great promise for future research. Not only, were               
promising results discussed, and were first steps into the validation made. The tool has obvious utilization,                
pre- and during fire events. Pre-fire, high-risk areas can be assessed on the basis an ignition would happen at                   
any time from the latest satellite image. This can inform forest management crews ahead of possible fires                 
about the possible damage caused by fires and the area it could consume. During fires, when the ignition                  
point is recorded, the model can more accurately predict the direction, extent and boundary of the fire                 
within seconds. This can inform fire crews where to interfere to prevent further spreading. Additionally, the                
tool can be integrated with fuel moisture content models, using improved moisture content measures in the                
field to enhance the predictions. With the correct ignition data at the start and during the fire, the methods                   
can be employed to predict the behaviour of fires during the fire, with an accurate prediction of the                  
direction, speed and flame height of fires based on the current conditions. Additional data sources such as                 
lightning strikes and wind data are critical. 

6. Appendix: Technical Requirements 
We use the PyTorch deep learning package for all our models. Both our models are trained on patches                  

of 256x256 pixels on 20 m resolution. We use a batch size of 20, the learning rate of 1e-4 and weight decay                      
regularisation of 1e-4 for training. We crop the input tiles into patches with a stride of 64 pixels. For inference,                    
we use a larger patch size of 512x512 pixels. Finally, we stitch the small patch predictions using a sliding                   
window averaging method combined with boundary Spline weighting. 

Our model takes 10~12 hours to train on the whole training set of ~100 Sentinel-2 tiles using 2 V100                   
GPUs. Source code is available on Gitlab. 

References 
[1] Borchers Arriagada N, Bowman DMJSJS, Palmer AJ, Johnston FH. Climate Change, Wildfires,            

Heatwaves and Health Impacts in Australia. Extrem. Weather Events Hum. Heal., Springer, Cham; 2019, p.               
99–116. https://doi.org/https://doi.org/10.1007/978-3-030-23773-8_8. 

[2] Etchells H, O’Donnell AJ, Lachlan McCaw W, Grierson PF. Fire severity impacts on tree mortality               
and post-fire recruitment in tall eucalypt forests of southwest Australia. For Ecol Manage 2020;459:117850.              
https://doi.org/10.1016/j.foreco.2019.117850. 

[3] Kasin JA, Papastathopoulos I. A spatial Poisson hurdle model with application to wildfires 2020. 
[4] Coffield SR, Graff CA, Chen Y, Smyth P, Foufoula-Georgiou E, Randerson JT. Machine learning to               

predict final fire size at the time of ignition. Int J Wildl Fire 2019;28:861–73. https://doi.org/10.1071/WF19023. 

[5] Yu P, Xu R, Abramson MJ, Li S, Guo Y. Bushfires in Australia: a serious health emergency under                  
climate change. Lancet Planet Heal 2020;4:e7–8. https://doi.org/10.1016/S2542-5196(19)30267-0. 

[6] Ashe B, McAneney KJ, Pitman AJ. Total cost of fire in Australia. J Risk Res 2009;12:121–36.                
https://doi.org/10.1080/13669870802648528. 

[7] Ximenes F, Stephens M, Brown M, Law B, Mylek M, Schirmer J, et al. Mechanical fuel load reduction                  
in Australia: a potential tool for bushfire mitigation. Aust For 2017;80:1–11.           
https://doi.org/10.1080/00049158.2017.1311200. 

[8] Storey MA, Price OF, Bradstock RA, Sharples JJ. Analysis of Variation in Distance, Number, and               
Distribution of Spotting in Southeast Australian Wildfires. Fire 2020;3:10. https://doi.org/10.3390/fire3020010. 

[9] Rao K, Williams AP, Flefil JF, Konings AG. SAR-enhanced mapping of live fuel moisture content.               
Remote Sens Environ 2020;245:111797. https://doi.org/10.1016/j.rse.2020.111797. 

[10] Yebra M, Dennison PE, Chuvieco E, Riaño D, Zylstra P, Hunt ER, et al. A global review of                  
remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational              
products. Remote Sens Environ 2013;136:455–68. https://doi.org/10.1016/j.rse.2013.05.029. 

[11] Maffei C, Menenti M. Predicting forest fires burned area and rate of spread from pre-fire               
multispectral satellite measurements. ISPRS J Photogramm Remote Sens 2019;158:263–78.         
https://doi.org/10.1016/j.isprsjprs.2019.10.013. 

[12] Keyser AR, Westerling ALR. Predicting increasing high severity area burned for three            
forested regions in the western United States using extreme value theory. For Ecol Manage 2019;432:694–706.               
https://doi.org/10.1016/j.foreco.2018.09.027. 

[13] Flannigan MD, Wotton BM, Marshall GA, de Groot WJ, Johnston J, Jurko N, et al. Fuel                
moisture sensitivity to temperature and precipitation: climate change implications. Clim Change           
2016;134:59–71. https://doi.org/10.1007/s10584-015-1521-0. 

[14] Podschwit HR, Larkin NK, Steel EA, Cullen A, Alvarado E. Multi-model forecasts of             
very-large fire occurences during the end of the 21st century. Climate 2018;6:1–21.            
https://doi.org/10.3390/cli6040100. 

[15] Pu R, Gong P. Determination of burnt scars using logistic regression and neural network              
techniques from a single post-fire Landsat 7 ETM+ image. Photogramm Eng Remote Sensing 2004;70:841–50.              
https://doi.org/10.14358/PERS.70.7.841. 

[16] Jain P, Coogan SCP, Subramanian SG, Crowley M, Taylor S, Flannigan MD. A review of               
machine learning applications in wildfire science and management 2020. 

[17] Chuvieco E, Mouillot F, van der Werf GR, San Miguel J, Tanasse M, Koutsias N, et al.                 
Historical background and current developments for mapping burned area from satellite Earth observation.             
Remote Sens Environ 2019;225:45–64. https://doi.org/10.1016/j.rse.2019.02.013. 

[18] Plank S, Karg S, Martinis S. Full-polarimetric burn scar mapping–the differences of active             
fire and post-fire situations. Int J Remote Sens 2019;40:253–68. https://doi.org/10.1080/01431161.2018.1512768. 

[19] Chuvieco E, Aguado I, Salas J, García M, Yebra M, Oliva P. Satellite Remote Sensing               
Contributions to Wildland Fire Science and Management. Curr For Reports 2020;6:81–96.           
https://doi.org/10.1007/s40725-020-00116-5. 

[20] Mayr MJ, Vanselow KA, Samimi C. Fire regimes at the arid fringe: A 16-year remote sensing                
perspective (2000–2016) on the controls of fire activity in Namibia from spatial predictive models. Ecol Indic                
2018;91:324–37. https://doi.org/10.1016/j.ecolind.2018.04.022. 

[21] De Bem PP, De Carvalho OA, Matricardi EAT, Guimarães RF, Gomes RAT. Predicting             
wildfire vulnerability using logistic regression and artificial neural networks: A case study in Brazil’s Federal               
District. Int J Wildl Fire 2019;28:35–45. https://doi.org/10.1071/WF18018. 

[22] Xie Y, Peng M. Forest fire forecasting using ensemble learning approaches. Neural Comput             
Appl 2019;31:4541–50. https://doi.org/10.1007/s00521-018-3515-0. 

[23] Mote T, Singh A, Prasad M, Kalwar P. Predicting burned areas of forest fires: An artificial                
intelligence approach. Int J Tech Res Appl 2017:56–8. 

[24] Castelli M, Vanneschi L, Popovi A. Predicting burned areas of forest fires: an artificial              
intelligence approach. Fire Ecol 2015;11:106–18. https://doi.org/10.4996/fireecology.110106. 



7 4  ·  D ATA Q U E S T 2 02 0

[25] Archibald S, Roy DP, van Wilgen BW, Scholes RJ. What limits fire? An examination of               
drivers of burnt area in Southern Africa. Glob Chang Biol 2009;15:613–30.           
https://doi.org/10.1111/j.1365-2486.2008.01754.x. 

[26] Arnold JD, Brewer SC, Dennison PE. Modeling climate-fire connections within the great            
basin and upper Colorado River Basin, Western United States. Fire Ecol 2014;10:64–75.            
https://doi.org/10.4996/fireecology.1002064. 

[27] Cortez P, Morais A. A Data Mining Approach to Predict Forest Fires using Meteorological              
Data. Proc 13th Port Conf Artif Intell 2007:512–23. 

[28] Toujani A, Achour H, Faïz S. Estimating Forest Fire Losses Using Stochastic Approach: Case              
Study of the Kroumiria Mountains (Northwestern Tunisia). Appl Artif Intell 2018;32:882–906.           
https://doi.org/10.1080/08839514.2018.1514808. 

[29] Liang H, Zhang M, Wang H. A Neural Network Model for Wildfire Scale Prediction Using               
Meteorological Factors. IEEE Access 2019;7:176746–55. https://doi.org/10.1109/ACCESS.2019.2957837. 

[30] Mitsopoulos I, Mallinis G. A data-driven approach to assess large fire size generation in              
Greece. Nat Hazards 2017;88:1591–607. https://doi.org/10.1007/s11069-017-2934-z. 

[31] Zald HSJ, Dunn CJ. Severe fire weather and intensive forest management increase fire             
severity in a multi-ownership landscape. Ecol Appl 2018;28:1068–80. https://doi.org/10.1002/eap.1710. 

 



D ATA Q U E S T 2 02 0  ·  7 5

[25] Archibald S, Roy DP, van Wilgen BW, Scholes RJ. What limits fire? An examination of               
drivers of burnt area in Southern Africa. Glob Chang Biol 2009;15:613–30.           
https://doi.org/10.1111/j.1365-2486.2008.01754.x. 

[26] Arnold JD, Brewer SC, Dennison PE. Modeling climate-fire connections within the great            
basin and upper Colorado River Basin, Western United States. Fire Ecol 2014;10:64–75.            
https://doi.org/10.4996/fireecology.1002064. 

[27] Cortez P, Morais A. A Data Mining Approach to Predict Forest Fires using Meteorological              
Data. Proc 13th Port Conf Artif Intell 2007:512–23. 

[28] Toujani A, Achour H, Faïz S. Estimating Forest Fire Losses Using Stochastic Approach: Case              
Study of the Kroumiria Mountains (Northwestern Tunisia). Appl Artif Intell 2018;32:882–906.           
https://doi.org/10.1080/08839514.2018.1514808. 

[29] Liang H, Zhang M, Wang H. A Neural Network Model for Wildfire Scale Prediction Using               
Meteorological Factors. IEEE Access 2019;7:176746–55. https://doi.org/10.1109/ACCESS.2019.2957837. 

[30] Mitsopoulos I, Mallinis G. A data-driven approach to assess large fire size generation in              
Greece. Nat Hazards 2017;88:1591–607. https://doi.org/10.1007/s11069-017-2934-z. 

[31] Zald HSJ, Dunn CJ. Severe fire weather and intensive forest management increase fire             
severity in a multi-ownership landscape. Ecol Appl 2018;28:1068–80. https://doi.org/10.1002/eap.1710. 

 



76  ·  D ATA Q U E S T 2 02 0

EARLY DETECTION OF 
FIRE IGNITION

EA
RLY DETECTIO

N

D

A T A  Q U E S T  2 0 2 0

 

 
 
 
 
 
 
 
 
 
 
 

BUSHFIRE DATA QUEST 2020 

Technical Memorandum  

Detecting Fires Earlier Using Image Stacking and Super-resolution 

 

Katharine Melnik (Scion Crown Research Institute, NZ) 

Ilze Pretorius (Scion Crown Research Institute, NZ) 

Alex Codoreanu (Swinburne University Gravitational Wave Data Centre) 

Jack White (Swinburne University of Technology) 

 

Science and Data Leads 

Dr Ruth Luscombe (Fireball International Pty Ltd) 

Dr Marta Yebra (Australian National University) 

Dr Chedi Raïssi (Ubisoft, Singapore) 

 

 

 

  

 



D ATA Q U E S T 2 02 0  ·  7 7

 

 
 
 
 
 
 
 
 
 
 
 

BUSHFIRE DATA QUEST 2020 

Technical Memorandum  

Detecting Fires Earlier Using Image Stacking and Super-resolution 

 

Katharine Melnik (Scion Crown Research Institute, NZ) 

Ilze Pretorius (Scion Crown Research Institute, NZ) 

Alex Codoreanu (Swinburne University Gravitational Wave Data Centre) 

Jack White (Swinburne University of Technology) 

 

Science and Data Leads 

Dr Ruth Luscombe (Fireball International Pty Ltd) 

Dr Marta Yebra (Australian National University) 

Dr Chedi Raïssi (Ubisoft, Singapore) 

 

 

 

  

 



7 8  ·  D ATA Q U E S T 2 02 0

 

Abstract / Executive Summary 
Early fire detection is vital for effectiveness and ultimate success of fire emergency response. Geostationary 
satellites such as Himawari-8 provide data at a high temporal resolution (at least every 10-minutes across the 
entire disk and more frequently in special regions) necessary for identifying fire ignitions soon after they 
occur. However, the spatial resolution of Himawari-8 images is 1km × 1km or lower (compared to spatial 
resolutions in the order of ~400 m from polar-orbiting satellites), and there is a need to process the 
lower-resolution geostationary satellite data in a way that will increase the detectability of wildfire ignitions. 
 
We explored two techniques for improving Himawari-8 image quality with the aim to increase the 
effectiveness of current fire detection methods: 

1. image stacking coupled with image subtraction – averaging several previous images to form a 
“baseline” image and subtracting it from the newest available image to make temperature anomalies 
clearly visible; and 

2. super-resolution – a machine-learning-driven technique for increasing the resolution of an image. 
 
We stacked the pre-fire images by calculating the average value across the images for each pixel, and 
subtracted the resulting image stack from the ignition image (the image obtained just after ignition. After this 
we used a previously developed super-resolution network to increase the resolution of the pre-ignition 
stacked image, the ignition single image, and the resulting subtracted image. The Orroral Valley fire hotspot 
is more clearly visible in the subtracted image compared with the pre-ignition image alone, and is even more 
distinctive in the super-resolved subtracted image. This technique, coupled with the current state-of-the-art 
fire detection models, promises to increase the speed and reliability of ignition detection and fire location 
accuracy, boosting the effectiveness of fire emergency personnel by allowing them to fight fires early while 
they are at a manageable size and require less resources. 
 

Introduction 
Hundreds of fires are ignited by lightning during the Australian bushfire season. This often happens in 
remote areas where fires can become large and unmanageable by the time they are detected. 

Bushfires can significantly impact ecosystems and society, and often require extensive management to 
mitigate negative effects. Early fire detection is vital for the effectiveness and ultimate success of fire 
emergency response, and satellite data sometimes provides the only way to identify fire ignitions when they 
occur in remote areas. There are two types of satellites: polar-orbiting satellites that orbit the Earth and 
collect high-resolution information of each location as they pass over it (usually twice a day), and 
geostationary satellites that travel at the speed of Earth’s rotation and collect lower-resolution data of the full 
disk (the whole Earth as visible from the satellite location) at predetermined intervals. Since the long return 
interval of polar-orbiting satellites makes them unsuitable for early fire detection, there is a need to process 
the lower-resolution geostationary satellite data in a way that will increase the detectability of wildfire 
ignitions. 

In the present work, we investigate the ability of image stacking and machine-learning techniques to detect 
fires from orbit soon after ignition using fast imaging. Detecting and localizing fires earlier will enable small 
teams to access blazes before they get out of control thereby reducing the damage caused by fires, potentially 
saving lives and decreasing fire management costs. 
 
 
Identified Needs and Opportunities  
 
The existing Himawari-8 fire detection product has a thresholding approach, where the difference between 
band-7 and band-14 brightness temperature is calculated and if it’s greater than 30 Kelvin (K) during the day, 
and 15 at night, a fire detect is registered (Xie et al 2018, Xu and Zhong 2017). This characteristic active fire 
 

 

signature is the result of the enormous difference in 4- and 11-Angstrom blackbody radiation emitted at 
combustion temperatures as described by the Planck function. The threshold values (30 and 15 K for day and 
night, respectively) are conservatively chosen to reduce the number of false positive detections (Xie et al 
2018). However, a consequence of the thresholding approach is that small/early fires are often missed, as 
these often fall below the chosen threshold value (Xie et al 2018, Lin et al 2016). Therefore, there is a need 
to improve the current fire detection pipelines so reliable detections of small/early fires are possible. 
 
We identify the following three opportunities to improve on current methods using machine learning 
techniques and advanced processing: 
 

1) Increase the signal to noise ratio in the detected image 
2) Perform image subtraction to identify fire pixels at lower threshold values without increasing 

false positive detections 
3) Increase the resolution of the image to identify the fire location and/or extent with increased 

precision 
 
Interestingly, we decided on the above approach before reading a paper by Pennypacker et al. (2013), which 
recommends a very similar approach for a proposed satellite system. The fact that we independently arrived 
at the same conclusions as the authors of this paper testifies to the validity of this approach. To our 
knowledge, this is the first time this methodology was applied to geostationary satellite data for fire 
detection. 

Data description 
 
Figure 1 shows a typical true-colour view of Australia and New Zealand from the Advanced Himawari 
Imager (AHI) on the Himawari-8 satellite. In order to validate our approach we decided to pull data for all 13 
bands of the AHI data on the first day of our target fire (the Orroral Valley Fire, near Canberra), along with 
the previous two days of data from 0900 to 1600. The central wavelength, resolution and bandwidth of each 
AHI band is described here and we pulled all 13 bands in order to: 

● make true color images of our area of interest, 
● investigate stacking strategies for each band to determine the point at which stacking stops adding 

any useful information, 
● validate our subtraction hypothesis on all bands, and 
● reproduce previous detection strategies (Xie et al 2018). 

 
We ended up with wavelength coverage from 0.455μm to 13.30μm of the Orroral Valley fire ignition area 
from 0900 to 1600 for the 25th, 26th and 27th of January 2020 at 10 minute intervals. This allows us to make 
an on-the-ground comparison before, at and after the first reported ignition, which occurred at 13.50 on the 
27th of January. 

We created 2 domain regions, a large domain to be used for visual inspection of true color images and a 
smaller science domain to be used for the proposed detection pipeline. The large domain is 200 × 200 pixel 
square defined by an upper left corner at 147.66○, -34.35○ and lower right corner at 150.28○, -36.89○. The 
science domain is a 60 × 64 pixel rectangle defined by an upper left corner at 148.54○, -35.18○ and lower 
right corner at 149.33○, -35.99○. 
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Data Gaps 
 
In this study we used the full disk imagery, which arrives every 10 minutes. However, Himawari-8 
also offers additional observation modes. These can increase the acquisition frequency to one image 
every 30 seconds (Figure 2). This higher frequency can have a significant positive impact on 
anomaly detection algorithms, such as ours. 

 

 
 
 

 

 

Figure 1. True-colour RGB image of Australia and New Zealand on December 4th, captured from the JAXA 
Himawari  Monitor at https://www.eorc.jaxa.jp/ptree/. 

 

Figure 2. Diagram showing the locations of the three regional frames that are acquired every 2.5  or 0.5 minutes, compared 
to every 10-minutes for the full-disk images. Image credit: https://spaceflight101.com/spacecraft/himawari-8-and-9/ 

 

For the purposes of this study, we visually inspected the data in order to identify similar non-cloudy 
days. Additional work and data would be needed in order to automate both the cloud-masking and 
plume vs. cloud identification.  
 
Ground-based sub-mm radar with coverage over remote areas can also provide an important 
complementary data set to facilitate the validation of satellite based triggers by directly probing the 
resulting smoke plumes. 
 

Data Exploration 
 
Image stacking is a crucial component of our novel detection strategy and one of the first questions we 
wanted to answer was: how many images would be enough and would this number be dependent on the band 
considered? 

 

 
 
We decided to investigate the above question by iteratively stacking up to 12 images. We used this final 
stacked image as the ‘best’ image to be compared to each subsequent stack. In order to quantify the relative 
similarity for each comparison, we computed the structural similarity index (SSIM). The results are 
presented in Figure 3. 
 
We found that the improvement in similarity is not uniform across the bands, and the curves flatten out for 
all bands. Interestingly, the greatest gain in quality is across bands 8 through 10. We do not use these bands 
but simply highlight this gain. For the purposes of our study, we decided to focus on band 7 images, and to 
stack up to 6 images together. 
 

Methodology 
 
Workflow overview 
Our workflow consists of four individual steps: 

 

 

Figure 3. Structural Similarity Index as a function of number of images used in the 
averaging stack. 
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● create a preprocessed stacked image for each 10-minute interval composed of images from an hour 
of data; 

● extract the relevant stamp from the incoming full disk image; 
● subtract the incoming stamp from the appropriate stacked image; and 
● identify hotspots, if present. 

 
A description of the workflow with reference to a case study of the early detection of the Orroral Valley Fire 
in a remote area in south-eastern Australia is given in the following sections, and illustrated in Figure 4. 

 

 
 
Data inputs 
For the purpose of this study, all Himawari-8 full disk images were saved to local storage and the large and 
science domain stamps were extracted from each one of them. This was done in order to minimise computing 
time/overhead as this study was a proof of concept for the novel remote wildfire detection method described 
in this document. All operations in the processing were applied to Band-7 data only. 
 
Super Resolution 
The large and science domain stamps were then super-resolved using a pre-trained Enhanced Deep 
Super-Resolution Network (EDSR) (Lim et al, 2017). EDSR is a deep residual network that reconstructs 
input images to a given upscaled resolution. The model can increase the resolution of an input image by up to 
four times the original resolution through inferring the correct pixel intensities between existing pixels. 
Utilising EDSR in this workflow allowed us to run the follow-up analysis in parallel, for both datasets. The 
super-resolved data has been upscaled so that each pixel has an on-the-ground size of 0.5 × 0.5km, compared 
to 2.0 × 2.0km in the original images. 
 
The EDSR model was pre-trained on a diverse set of high-resolution/low-resolution pairs from the DIV2K 
dataset (Agustsson, E., & Timofte, R., 2017). Although the image content in the training data is not 
Earth-observation based, the generalisability of these networks are sufficient to capture general low-level 
features and upscale them efficiently. However, some reconstruction quality is sacrificed when the input 
Earth-observation image is relatively featureless (e.g., large bodies of water, desserts). With custom training 
data that is comprised of Earth-observation images and featuring fire affected regions, we expect that these 
reconstruction losses can be addressed for future integration into a fire detection pipeline.  
 

 

 

Figure 4. Illustration of the workflow used to create the detection image from Band-7 (B07) data. 

 

Integrating this model into a pipeline would also warrant computational optimisation of the network for a 
particular resolution, as the speed of the reconstruction is dependent on the resolution of the input image. 
Considering the time-dependence that early fire detection requires, measuring the reconstruction speed and 
then exploring the resolution/reconstruction time dependence could save valuable time in a future emergency 
response system. Although it is worth noting that current reconstruction speeds for a single image are on the 
of less than a minute for an image of around 800x800 pixels being reconstructed to x4 the original resolution. 
 
Image Stacking 
Next, we created an associated stacked image for each 10-minute interval starting from 0900 to 1600 for the 
two days considered: 

● 25th of January - 2 days before the fire with similar clear sky conditions as the ignition time 
● 26th of January - 1 day before the fire with cloudy conditions over the ignition area 

 
We stacked images by taking a simple mean of the input images, but other schemes are also possible, for 
example, median stacking or weighting images using a measure of noise. At this point, we had the single 
incoming images as they would have arrived in real-time, along with the image stacks from the previous 
day/s. This allowed us to effectively simulate an observation strategy where a new incoming image is 
super-resolved and then compared to a stacked image from a previous day, with and without similar cloud 
conditions. For the original-scale images, we are able to send an alert within 10 seconds of receiving the full 
disk image while the super-resolution step adds another 30 to 40 seconds to the total processing time. 
Currently, the output of our pipeline is a subtraction image that displays the relative temperature change for 
each pixel. 
 
With this workflow, we would be able to identify and localise a wildfire event within one minute of 
receiving an incoming image. 
 
 
 
Asides – Paths not Taken 
We briefly explored the potential of detecting fires in bands dominated by signals from particular ion or gas 
emission lines present in flames or smoke and compiled a summary of potential emission lines (Table 1). We 
decided not to pursue this path due to the time constraints of a one-week research sprint, but we identified 
that there may be potential in this space. We highlight that there are visible traces in Band-1 which most 
likely trace the CO2 released by wildfires. This suggests that there is scope for this tracer to be used as a 
discriminator to minimise false-positive alerts. 
 
Table 1. A summary of wavelengths from particular ion or gas emissions present in flames or smoke. 
 

 

Element/ 
molecule 

Peak 1 
(µm) 

Peak 2 
(µm) 

Notes Main 
Reference(s) 

Potassium (K+) 0.7665 0.7699 The 769.9 peak overlaps with O2 absorption in the 
atmosphere, therefore the 766.5 nm line would have 
the highest intensity when viewed through the 
atmosphere. 
 
K only emitted during flaming fire and can be 
detected through smoke 

Amici, et al., 
2011 

 Sodium (Na+) 0.5893   The Na emission signal magnitude is substantially 
lower than that of potassium, presumably because 
of the higher 

Amici, et al., 
2011 
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Other options that showed potential, but could not be researched further due to time constraints, were: 

● using Synthetic Aperture Radar (SAR) instruments on satellites to detect fires through cloud 
● using ground-based weather radars to detect smoke plumes from early fires. 

Results and Discussion 
 
We demonstrated the feasibility of using single-band images (B07) to effectively identify a remote wildfire. 
Our detection strategy is unique in that we approach the problem from first principles and identify changes in 
ground emissivity (i.e., the number of photons reflected by the surface of the Earth) centered around 3.9μm. 
This corresponds to a blackbody with peak temperature of around 400K. In remote or urban areas, there are 
no variable heat emitters that could introduce transient sources in this range. Thus we are confident that our 
detection strategy has the potential to limit false positive triggers and contribute to a robust wildfire alert 
system. 
 
As it stands, the implemented workflow also provides an improved localisation of the wildfire ignition 
hotspots. This is a crucial element in early response as the current 2 km positional uncertainty could lead to 
fire teams deploying on the wrong side of a mountain ridge, or on the opposite bank of a river. An accurate 
localisation can then influence the deployment plans of first responders. 
 

Next Steps and Recommendations 
 
 
The limiting factor to our research sprint was time. We had a very productive sprint and produced a 
successful proof-of-concept detection system. However, further work is required to automate each of the 
steps in the workflow, including: 

● automating the detection and masking of clouds when selecting individual images that feed into the 
stacked reference image;  

● developing and testing an automated workflow to create a reliable reference image, possibly from 
archive data, when images from preceding days are unusable due to clouds or other issues; and 

● automating the detection and localisation of the ignition hot spot within the resulting subtraction 
image. 

 

excitation energy and lower percentage dry weight 
of the former 
element in vegetation fuel 

Potassium (K+) see above 

Chlorine (Cl-) 0.4526 0.7769 Chlorine has 11 spectral lines, the two included here 
are the most intense 
 
Couldn’t find any evidence that this has been used 
in fire detection before. 

Bolshakov 
and Barnes, 
1997. 

Sulfate (SO4
2-)      Couldn’t find any evidence that this has been used 

in fire detection before. 
  

Carbon Dioxide 
(CO 2) 

~1.61   There are other peaks, but some are absorbed by the 
atmosphere. 

Ross et al, 
2013. 

Methane (CH4) ~1.65     Ross et al, 
2013. 

 

 
Following these developments, we would test and validate the detection pipeline by running it on historical 
data, and compare the results to ground-truth from previous fire seasons. This would provide an accurate 
characterisation of the precision and recall of our solution and provide a benchmark for converting our 
approach into a live tool. We note that experimental test-burns would be particularly useful for validation 
and testing, as ignition time and rate-of-spread are usually recorded in detail. 
 
In more detail, the additional work we propose is: 
 

1. Automatically detect and segment clouds within an image:  
Current and previous teams from the Frontier Development Lab network have already tackled this 
technical challenge (e.g., https://arxiv.org/abs/1911.04227), in addition to recently published 
research (e.g., https://doi.org/10.3389/fenvs.2019.00020 ). We estimate that this effort would require 
2 weeks to incorporate within a stable framework. 

2. Identify an appropriate detection threshold to investigate:  
This is a crucial step and our team is uniquely positioned to deliver on this task. The Scion Rural Fire 
Research Team has performed a scientific experimental burn in 2020 which was not identified as an 
official hotspot by the current Himawari-8 detection algorithm. We have the exact coordinates of this 
burn and we can calibrate our detection threshold so that this fire is identified. This step would take 
around 1 week.  

3. Create a service architecture to simulate the 2019 fire season:  
In order to validate our novel detection algorithm we would need to scale our solution. This would 
require a full season of data and the development of a new computing architecture. We are an 
experienced team and can deliver on this task as well. DUG Technology has already offered 
additional computational support and we have also secured compute time on Swinburne’s 
supercomputer, OzStar . This is a significant task and would take 6 to 8 weeks to develop and run. 1

4. Quantify the precision and recall of each detection threshold:  
Finding a wildfire is important but it is just as important to send confident alerts. This is a pivotal 
component of the work as it comments on the opportunity cost incurred by end users. This analysis 
would follow on the previous work and would take approximately 2 to 4 weeks, depending on the 
level of visualisation that will be required. 

5. Document and publish results:  
Finishing the technical work would in itself be a crucial milestone, but additional time would be 
required to fully document the work and also produce a final report. This would take an additional 2 
to 4 weeks depending on the level of the final report (i.e., academic paper vs. internal document). 

 
 
In closing, for an additional 12 to 19 weeks of work we could deliver a fully-functioning remote fire 
detection system that can provide early alerts and continue mapping hotspots as they move across the 
landscape. 
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Abstract / Executive Summary 
Extreme fire behaviour turns the bushfire from bad to catastrophic. They are unpredictable and 
cause more damage than a non-dynamic but fierce bushfire. Their occurrence cannot be predicted 
accurately until very close to the event which puts the firemen in danger. An experienced 
fire-fighter can see the beginning of a pyroCB event from the change in smoke plume colour and 
texture; would it be possible to analyse the plume features to detect these changes before they are 
visible to an eye? We use plume and haze masking to identify the smoke, and use methods of 
unsupervised machine learning to analyse the plume features of Gosper Mountain Fires in 
2019-2020. We hoped to see clustering of the results, clearly marking the difference between a 
normal fire day and a pyroCB event. By using Himawari-8 data from all bands, we observed some 
visual changes in the plume as well as small differences in the principle components between 
different kinds of days. We were able to identify the frequency bands that marked the clear 
difference in case of an extreme fire event. One of the challenges was the spatial resolution of 
Himawari-8 data which was not ideal for detecting relatively small size events such as pyroCB’s. 
This can be improved for the future either by using different satellite data or selecting the 
Himawari-8 bands with higher spatial resolution. We are also planning to improve the data set by 
adding weather data, as well as adding temporal gradients to smooth the data. For better analysis 
in the future we are considering using object detection and image segmentation.  

Introduction 
Fires with extreme - or dynamic - fire behaviour contribute to disproportionate damage statistics. 
These fires are uncontrollable and unpredictable, and can often lead to loss of lives (Filkov et al. 
2020). An experienced firefighter can observe the change in fire behaviour by the smoke plume 
colour and texture. Unfortunately the observations are not visible until very close to the actual 
change, or they occur in the upper layer of the plume while the smoke closer to ground covers the 
vision. 
 
In the present work we investigate whether satellite data combined with machine learning could 
simulate the observations of an experienced firefighter with the benefit of seeing above the smoke. 
If we were able to identify the features of smoke plumes during dynamic fire events, could we use 
this to take a few steps back in the history and predict dynamic fire changes in advance?  
 
In this proof-of-concept we concentrate purely on smoke plumes and weather based dynamic fire 
behaviour (e.g. pyroCB’s). Other factors such as fuel and topography play an important role in 
some other types of extreme events and they should be taken into account in the future research. 
This study concentrates on one of the largest bushfires in Australia, the Gospers mountain fire 
during summer 2019-2020. Several pyroCB’s were detected during that fire which makes it an 
ideal target for our study. 
 

Identified Needs and Opportunities  
 
With fire seasons lasting longer and causing more damage than ever before there is a growing 
need to automate the detection and monitoring of wildfire behaviours. With the formation of the 
Australian space agency in 2018, we look to the next generation of satellites (currently under 
review?) and indeed their instrumentation to enable this. There is a strong need to identify spectral 
features or signatures that would indicate changes in fire behaviour and mark extreme events.  
 
Satellites often face resolution limitations either spectrally, spatially or temporally. When identifying 
a satellite data  
 
We identified an opportunity to use smoke plumes as a proxy for fire behaviour. The goal being to 
detect and ideally predict events through subtle changes in the spectral features so that response 
coordinators and commanders can most effectively manage the resources at their disposal. Most 
of the current satellites available for monitoring fires have good spatial resolution, but long revisit 
times. Smoke plumes are often overlooked when trying to monitor a fire. 

 

 

Data description 
We use data from the Himawari-8 satellite in the region of the Gosper mountain fire as well as 
regions of south coast NSW (the bounding box between longitudes 148.16 to 152.00 and latitudes 
-30.81 to -37.41) from the beginning of November 2019 until the end of February 2020. This time 
period covers almost the entire duration of the Gosper mountain fire and should include most if not 
all dynamic fire behaviours and extreme events.  
 
Himawari-8 data enables an excellent temporal resolution of 10 minute which is critical for 
observing rapid changes in the fire behaviour. Note that we take hourly samples of the data for the 
entire period and then finer samples of 30, 20 and 10 minute samples around certain extreme fire 
events. To help detect plumes we chose to concentrate on daylight hours, roughly between 8 am 
and 6 pm of local time, which corresponds to 9 pm and 7 am of GTM (satellite time). 
 
We used all 16 spectral bands of the Himawari data, however this meant that we were limited to 2 
km spatial resolution. We found this reasonable for the proof-of-concept, but ideally should be 
improved for the final application. Given our objective of detecting changes in behaviour through 
smoke plumes, we felt that temporal and spectral resolution were more important than spatial.  
 
Data Gaps 
According to our PCA (results explained in detail later) the most significant bands of Himawari-8 for                
analysing smoke plumes are the visible ones and near-IR. However, these bands are significantly              
affected by the time of day. Coincidentally, it was noticed that a big part of the reported pyroCB                  
events occurred during the early hours of a day when it was still dark. This is something that                  
should be taken into account in the future studies. 
Another important factor is the spatial resolution. The size of a pyroCB plume is not large and the 2                   
km resolution of Himawari-8 does not provide enough pixels for fully characterising the smoke              
plume features. 
 

Data Exploration 
We expected to see some significant change in the smoke plume colour and texture and therefore 
we started the process by implementing true colour images and testing different plume and haze 
masks for the data. We used the ideas of Qin et al. 2019 and Shang et al. 2017 when 
implementing the masking. 
 
The greatest discovery we made during the data exploration was that by multiplying two cloud 
indexes we can highlight the plume even better. Our final haze masking uses bands 1 (blue) and 2 
(green), corrected with the temperature (band 14). Multiplying the blue and green mask, and 
setting limits to the range that is included we get the final mask we use. The equations are shown 
below. 

Methodology 
Workflow overview 
The high level workflow with different options is shown in Figure 1. The work can be summarised to 
three main tasks: 

1. Data processing, 
2. Application of ML methods, and 
3. Visualisation of the results. 

 

               cloud_g = ((373.15 - B014) / 100) * B02 

               cloud_b = ((373.15 - B014) / 100) * B01 

               plume = cloud_g * cloud_b 

               plume_02_07_mask = (plume >= 0.02) & (plume <= 0.07) 
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The details of each step are discussed further in the following subsections. 

 
 Figure 1. Overview of the workflow of this project. 

Data processing 
We created a flexible data processing pipeline for Himawari-8 in order to curate data sets that 
focus on a given region, times and set of spectral bands. The pipeline allows you to select a set of 
bands, spatial coordinates and time sampling pattern and consolidates the data into a single netcdf 
file. The time sampling pattern allowed us to, for example, take hourly data for the entire fire 
season, but subsample to 10 minute intervals around events of extreme fire behaviour. 
 
The basic steps in the pipeline are as follows… 

1. Get the data 
a. Pull the data from the NCI storage facility 
b. Check for gaps or corrupt files. Try pulling the data again. 
c. Remove missing files and leave them as gaps in the data. 

2. Open a netcdf file for writing the output  
a. Transform the desired coordinates to the Geostationary reference system. 
b. Project to the nearest coordinates in the image and use it as a template for 

cropping. 
c. Create the netcdf data group ready for writing and copy any metadata (Coordinate 

Reference System, Units etc)  
3. Iterate through the data cropping and stacking into the output file. 

 
The pipeline used parallel processing as much as possible and allowed us to consolidate the 
Himawari 8 data for the Gosper’s Mountain fire in the 2019-2020 fire season from 1.4TB of data in 
61,000 files into a single stacked data cube in a single 10GB file.  
 
One thing to note is that we decided not to reproject the satellite images into a human friendly 
coordinate reference system as we were concerned about the potential artifacts this might create. 
added. 
 
The pipeline is in a fairly usable state (however not fully productionised or supported) and can be 
found in our gitlab repository. 
 
Plume identification 
Important part of the pre-processing was applying cloud and haze masks. Unlike in normal satellite 
data processing we only wanted to pick the pixels of the smoke plumes. The cloud masking 
process is explained in more detail in section Data Exploration. 
Application of the ML methods 
Given the brevity of the Quest, and the exploratory nature of our work investigating the ability to 
predict fire behaviour based on smoke signature. Therefore, we focus our Machine Learning 

 

 

workflow on unsupervised learning. More specifically, we apply Principal Component Analysis 
(PCA) and Sparse-PCA to identify the most important bands to the spectral characterisation of 
haze from fires. PCA is a well-established method to reduce data to a lower dimensionality, Sparse 
PCA expands on the method by penalising the number of input channels used (Wall et al., 2003). 
See our results for an illustration of this. One pathway for predictions is through clustering analysis. 
To illustrate this, we investigate the applicability of Density-Based spatial clustering (see Schubert 
et al., 2017). This particular approach to clustering focuses on identifying areas of high density 
separated by low densities, a more appropriate approach when dealing with highly-connected 
clusters, seemingly the case with satellite observations. 
All ML methods were applied using the scikit-learn python library (https://scikit-learn.org). 
 
In parallel, the team from Northwest Nazarene University explored the use of an entropy-based 
decision tree (ID3), to identify which spectral band held most information. The ID3 algorithm is a 
supervised classification algorithm which utilizes Information Gain to recursively build a decision 
tree, by identifying the band with the highest Information Gain using a set of training pixels labeled 
as Plume or Not Plume (e.g. surface or cloud).  Subtrees are then recursively created from subsets 
of the training pixels partitioned on the band value split point for which the band was found to have 
the highest Information Gain.  Bands that are more useful for classifying Plume vs Not Plume will 
appear at the top of the decision tree, closest to the root.  Bands that are not as useful will be 
found further down the tree, farther from the root.  In the resulting Decision Tree, Himawari-8 
bands 1 and 10 were found to have the highest Information Gain, followed by bands 8, 5, 16, 6, 2 
and 4.  While the steps followed allow us to better understand the data and to select which spectral 
bands will contain the most information about fires and their smoke, they are not currently 
predictive.  However, cross validation accuracy exceeding 75% from very preliminary training sets 
shows promise for being able to use a decision tree to classify smoke plumes from Himawari-8 
data. 
 

 
 
 
Visualisation 
Visualisation is not only for producing nice colourful images but to evaluate the results. We hoped 
to see clusters forming during the extreme fire events to separate them from the normal (bad) fire 
behaviour. We did visualisation in three parts: (a) True colour and plume mask animations directly 
from the satellite images, (b) scatter images and animations of PCA and sparse PCA results 
(animations showing clustering as the time changes), and (c) barplots of the principal components. 
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Asides – Paths not Taken 
 
We also explored density-based clustering to try and identify subsets of fire behaviours within the 
himawari data. Due to time constraints we did not get to explore this fully, however there were 
some promising initial results.  
 
Our approach was to try and validate clusters by comparing them with PyroCB events. We used 
two subsets of data  

1. The first was all plume pixels across the whole season as identified by our plume mask.  
2. A subset of pixels centred on known PyroCB events for 2 days leading up to the event and 

1 day after.  
 
As feature sets for the unsupervised learning we took all 16 bands of the himawari 8 data along 
with the time of day. In some cases we tried to incorporate the plume spatial density by a couple of 
different approaches. All features were normalised. 
 
We looked at minimum group sizes equal to the number of events and a variety of different 
distance metrics readily available in the sklearn library. We found that epsilon values (an algorithm 
parameter that characterises the distance between related points) between 0.01 and 0.2 tended to 
give healthy cluster populations to examine.  
 
The biggest problem we faced with this approach was validating or identifying interesting groups. 
The best data we had for validating this in an automated way was PyroCB event information. 
However, this still seemed to lack the accuracy required for a detailed comparison (accuracy in 
time and position, the actual certainty of the occurrence and the fact that many of the events 
occurred during the night or during twilight). 
 
Our approach to validating clusters was to firstly exclude groups that 1) related spatially to pixels 
and 2) occurred at a single epoch/day (i.e. we need the group to have members over several 
times/fire events). We then looked at groups with the lowest time offset from the PyroCB events 
and then those with most consistent offsets from events in case there was a pre or post signature 
for PyroCB events.  
 
The preliminary results from the density-based clustering indicated that indeed there were groups 
that corresponded to events on particular days and circumstances. However, there were none that 
consistently matched our catalogue of PyroCB events. As mentioned above, our search was not 
exhaustive and this approach would serve well from a data exploration point of view (given some 
more time).  

Results and Discussion 
 

 

 

 

 
 Figure 3. The Principal Component Analysis (PCA) Himawari spectral band components, applied onto all pixels within 
the Gosper Mountains fires that were identified by our plume mask. The standard PCA (right) contrasts with the 
Sparse-PCA (left), which aims to minimize the dimensionality of each component. 
 
Figure 3 shows the components associated with each spectral band. The data consists of hourly 
observation for all dates from 1/11/2019 until 29/2/2020. While the visible and short-IR bands 
(bands 1 to 7) dominate the standard PCA, thermal IR dominates the Sparse PCA. The analysis 
included both cloud-masked (left) and all (right) data but interestingly the results were similar for 
sparse PCA. This suggests that the sparse PCA implementation ignores the spectral variariance of 
pixels we identified as plume. 
 
The first component (PC1) explains the vast majority of the variance in the data, with 80.9 and 
86.1% respectively for masked and all pixels. The second component (PC2) explains about 12% of 
the remaining variance. The general trend is similar, with PC1 focusing on the visible and short-IR 
bands (bands 1 to 6), all with positive components. In contrast PC2 distinguishes between the 
short-IR (bands 5 and 6), and the visible and near-IR (bands 1 to 4). The thermal IR seems to hold 
less information, although PC2 seems to put more emphasis on the far-IR (bands 14 to 16) than 
PC1. The Sparse PCA highlights a different picture, with the first 6 bands reduced to 0, which 
suggests the information they contain is highly correlated with other bands. Interestingly the 
Sparse PC1 distinguishes between mid and far-IR (bands 8 to 10 and 13 to 16 in particular). 
 
Our PCA supports the idea that when it comes to fire smoke (masked pixels), more information is 
contained in the Infrared channels than in the visible. This echoes the findings of many previous 
research papers (e.g. Sowden and Blake, 2020) 
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 Figure 4. Comparison of principal components for a pyroCB day (28.-29.12.2019) and non-pyroCB day (25.-26.12.2019) 
with 10 minute resolution. 
 
Figure 4 shows PCA for a pyroCB day (several confirmed pyroCB’s in the area) and a normal bad 
fire day without dynamic fire behaviour. Both time periods are from December 2019 for ensuring 
that other conditions (e.g. daylight time) are approximately the same. For the principal component 
1 (explaining about 85 % and 87 % of the variance for pyroCB day and non-pyroCB day, 
respectively), it is noteworthy that the visible bands (1-3) are less significant for pyroCB days than 
for the day without dynamic fire behaviour. For the PC 2, the difference can be observed in band 5 
(for a pyroCB day not significant while for a non-pyroCB day very significant), and in the higher 
bands 11-16 that show more activity during pyroCB day than for a normal bad fire day. 
 
The next three pages (Figure 5 a/b/c) shows a comprehensive visualization of the Gosper 
mountains fires on the 28th of December 2020, a known PyroCb day. We recommend visualizing 
the companion animation for a more representative and compelling assessment of the temporal 
changes in the spectral characteristics of the fires’ smoke. More importantly, the animation shows 
the process between the snapshots we discuss below is gradual, which highlights the potential for 
predictions. 
We will start by discussing the general picture provided by the true color images (along with our 
plume masks), before moving to the spectral signatures. Mid-IR bands, and band 7 in particular, 
are often used for fire detection (hotspots). We plot Band 7 as an indicator of hotspots, with colours 
ranging from low (blue) to high (red) temperatures, hotspots are particularly striking at 1pm (Figure 
2 c). Meanwhile the differences between Mid-IR (Band 7 and 8 here) and Far-IR (Band 12 and 14 
here) is commonly used for cloud and PyroCb identification. 
 
At 11am (AEST), the fires’ haze is blanketing the area, including Sydney. There is relatively low 
cloud cover. Half an hour past noon, the picture changes, with some clouds intruding from the 
South West, but also a lot of cloud activity around the area of interest (green). We posit these 
clouds may be fire-related and potential PyroCb events. At 1 pm, the cloud activity around the fires 
seems to have diminished, while the South-western clouds have progressed further into our area 
of interest.  
The spectral visualization also shows a likely sign of PyroCb expulsion: pixels within the area of 
interest (green), move towards lower Far-IR temperatures while their Mid-IR remains similar. A 
similar separation occurs in our first principle component (PC1), with high values in the second 
(PC2). In contrast, the clouds that intrude at 1 pm have lower temperatures across Mid and Far IR.  
 

 

 

 

 
 Figure 5 (a). 11am AEST on 28/12/2019. A comprehensive visualization of the Gosper mountains Fires. Blue and green 
shows pixels within our plume masks, while green shows all pixels within the bounding box around known PyroCb 
detections. Likely before a major PyroCb event. 

Figure 2 (b). 12.30pm AEST on 28/12/2019. A comprehensive visualization of the Gosper mountains Fires. Blue and 
green shows pixels within our plume masks, while green shows all pixels within the bounding box around known PyroCb 
detections. Likely as a major PyroCb event is occurring. Note how the PyroCb does not appear to be masked as smoke. 
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 Figure 5 (a). 11am AEST on 28/12/2019. A comprehensive visualization of the Gosper mountains Fires. Blue and green 
shows pixels within our plume masks, while green shows all pixels within the bounding box around known PyroCb 
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Figure 2 (c). 2pm AEST on 28/12/2019. A comprehensive visualization of the Gosper mountains Fires. Blue and green 
shows pixels within our plume masks, while green shows all pixels within the bounding box around known PyroCb 
detections. Likely after a major PyroCb event is occurring. Note the clouds coming from the south-west display a spectral 
signature distinct from previous snapshots (green points in the lower-left part of our band scatterplots, the bottom 
figures). 
 

Next Steps and Recommendations 
 
If this work was to be taken further, we recommend the next steps could focus on: 

1. Expanding our feature inputs by taking gradients for pixel both temporally as well as across 
our spectral bands. Temporal gradients would be good indicators for sudden changes in a 
single band measurement when it comes to expanding our unsupervised learning 
approach. Looking at gradients and indexes based on the combinations of bands would be 
more appropriate for a labelled/supervised learning set.  

2. We made some attempts to incorporate spatial information as features into our clustering 
analysis (average localised density of smoke plumes), however were not able to correlate 
this with any fire events. Some of the himawari bands offer resolutions of 1km and even 
500m in the case of band 3. It might be useful to interpolated a smoothed model of the 2km 
bands at lower resolutions. 

3. This analysis would benefit greatly from weather data. 
 
Object detection and image segmentation: object detection is a popular and fast-advancing field of 
ML research and applications. These methods could be used to identify specific cloud signatures, 
rather than spectral signature. Unlike our approach, this would take into account the size, shape 
and orientation of smoke plumes. While many of these algorithms can be taken off the shelf, they 
are commonly trained on more human topics: self-driving cars, or automated image tagging. 
Therefore we would estimate a few weeks to a few months of research would be necessary to 
transfer these algorithms to fire smoke identification and characterization, and behaviour 
prediction. 
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PCA sklearn 
-decomposition  
-preprocessing  

  

Sparse PCA sklearn 
-decomposition  
-preprocessing  

  

Clustering sklearn 
-model_selection 
-preprocessing 
-cluster.DBscan 

  

Visualisation 

PCA scatter plot matplotlib.pyplot 
matplotlib.patches 
mpl_toolkits.mplot3d 
 

  

PCA barplot matplotlib.pyplot 
mpl_toolkits.mplot3d 

  

Animation import imageio 
IPython.display 
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NEXT STEPS: FROM 
SOLVABLE TO SOLVED

Data Quest results are at an early stage and require 
significant work to rise up the Technology Readiness 
Ladder to TRL 9 (deployment in the field). We hope to 
build on these promising outcomes in further research 
sprints, engaging new and existing partners.

Future research efforts will result in tools and methods 
that are ready for live trial pilot studies in partnership 
with users such as incident commanders in the RFS as 
well as land managers in charge of post-fire mediation 
efforts.

However, there is no silver bullet and much work needs 
to be done before the AI capabilities demonstrated in this 
document can be trusted tools for fire-fighters on the 
ground. In this section we imagine some use-cases for 
AI, discuss the requirements for effective validation and 
for a framework supporting full-spectrum situational 
awareness. 
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Machine learning shows great promise in 
delivering more accurate results on faster 
timescales. 

However, there are also many pitfalls 
that can affect ML systems if improperly 
trained, causing them to fail under real-
world conditions. For example, the Data 
Quest early detection workflow has great 
potential, but real-world validation tests 
are urgently needed to answer questions 
like “How big does the fire need to be in 
different types of fuel, to be detected?” 
and “How do nearby heat sources, such 
a large slabs or rock, affect the detection 
algorithm - do they cause false positive 
detections or mask a new fire?”. 

Another example is the Data Quest’s new 
ML-driven fire-risk prediction workflow. 
This is a complex tool that uses a myriad 
of inputs to make a prediction: multi-band 
satellite data, models of terrain elevation, 
weather information and historic fire data. 
Live validation tests incorporating grids of 
advanced sensors are urgently needed to 
answer questions like “Is a change in wind 
direction and speed accounted for in the 
prediction, and under what conditions 
does the prediction break down?” and 
“How does the distribution of ignition 
points affect the speed and intensity of 
the fire front?” and finally “Does the fuel 
moisture content or fuel size distribution 
dominate the fire risk predictions under 
different weather conditions?”.
 
Live trials are also a superb forum for 
training new firefighters in emerging 
technologies, but also for technology 
developers to gain insight from 

experienced firefighting professionals. 
Members and affiliates of the Australasian 
Fire and Emergency Service Authorities 
Council (AFAC), such as the Rural Fire 
Services (RFS) have particular needs which 
must drive the development of technology. 
Live trials and concurrent design studies 
that bring together users, data owners and 
technologists, will encourage a mixing 
environment for the ultimate benefit of all 
stakeholders.

The Data Quest also identified significant 
gaps in the data necessary to produce 
truly paradigm changing results.

Technologists, firefighting processionals, 
data custodians, government agencies, 
research institutes and private companies 
must all work together to fill these gaps. 
This can be achieved building common 
protocols and a common framework that 
guarantees interoperability of everybody’s 
systems. We hope the partnership brought 
together by the 2020 Bushfire Data Quest 
can be the seed for that development 
effort.

THE IMPORTANCE 
OF VALIDATION & 
GROUND TRUTH
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The Data Quest has produced some 
excellent proof-of-concept technologies 
that promise to detect fires closer to 
ignition, create high resolution maps 
of fuel and fire-risk that are frequently 
updated, and detect the signatures of 
extreme fire behaviour. However, for 
maximum impact these technologies 
need to be deployed in a framework 
that actively supports their use and 
integrates with dynamic, networked 
and robust communication tools. It is 
equally important that fire-fighting 
professionals guide the development of 
this system and take ownership of it as it 
grows. Adoption of new technology in the 
field will depend on good communication 
and technologists willing to listen - and 
quickly respond - to users.

Through conversations with active 
firefighters we have identified that the 
most immediate need is for robust 
communication of rich situational 
awareness information between units on 
the ground and up the command chain. 
The ideal communication system should be 
based on reliable network technology and 
underpinned by a real-time ‘digital twin’ 
model that includes spatial information on 
equipment locations, unit orders, location 
of natural and built assets, importance of 
assets for protection, and information on 
individual firefighters such as medical data 
and allergies. This ‘cyber-infrastructure’ 
system should be enhanced by real-time 
data on the fire front, weather conditions, 
locations of water sources and risk-maps 
based on the latest fire-spread models 
- enhanced decedents of Data Quest 
outcomes.

We imagine that each Strike Team has 
access to a connected device that shows 

an annotated topographic map of the 
fireground and also serves as an efficient 
multi-way communication tool. Features 
on the map can be annotated and labeled 
by firefighters on the ground (e.g., 
firebreaks under construction, confirmed 
& potential water sources, possible 
helicopter landing areas, local assets and 
their importance) and this information 
is immediately synced to devices with all 
Strike Teams and then up the chain of 
command to the Incident Controller. Edit 
permissions would be granular, with some 
annotations remaining provisional until 
confirmed by an officer. The map would 
be augmented with remote-sensing data 
showing potential water sources, location 
of fire front, the latest fuel mapping 
information and predictive spread models .
  

THE FUTURE: 
FULL-SPECTRUM 
SITUATIONAL AWARENESS

The next diagram shows our 
proposed vison for developing 
the outcomes of Data Quest 
2020. 

The approach would blend 
more detailed understanding of 
user needs, existing technical 
and capital infrastructure, to 
be informed by a Megafires 
working group. Three more 
ambitious sprints would 
be then run looking at (1) 
Resilience, (2) Just-in-time 
insight and (3) the Response 
Management infrastructure 
to create the basis of a vision 
we are calling ‘CATCOM.ai’ 
(Catastrophe Command).
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The new age of Megafires: the need for 
integrated Earth Observation and AI to 
manage bushfire resilience and response. 
(‘CATCOM.ai’) 

During the two unprecedented and 
catastrophic fire seasons - the first in 
eastern Australia in early 2020, and the 
second in the USA in the middle of the year 
- emergency services and the information 
and comms infrastructure in both 
countries struggled to cope with the size 
and ferocity of the “megafires”, leading to 
avoidable deaths, large numbers of citizens 
becoming internal refugees, and massive 
destruction of property. 

The adoption of bushfire technology is 
heavily influenced by government policy 
and the Australian authorities have 
just released three reports that make 
strong recommendations to adopt data-
science methods and AI technology in 
support of Earth observations for bushfire 
management. Both the NSW Bushfire 
Inquiry and the Royal Commission into 
National Natural Disaster Arrangements 
make explicit a need to push available 
technologies harder, especially fire 
science, remote sensing, data science and 
artificial intelligence, to equip us better 
to understand what happens during a 
bush fire and respond more quickly - and 
recommends a data-fusion approach like 
those demonstrated during Data Quest. All 
76 recommendations of the NSW Inquiry 
will be adopted by the NSW Government. 
The Bushfire Earth Observation Task Force 
(led by The Australian Space Agency, 
CSIRO, GA and BoM) offers even more 
detail and recognises the role of the 
private sector in driving innovation. Their 
report recommends securing the data 
pathways with international partners and 
supporting private industry to collaborate 

on developing remote sensing platforms 
and tools. These recommendations are 
aligned with state (e.g NSW) and Australian 
national strategies that aim to foster 
collaboration across the industrial and 
space research communities - within 
Australia and internationally.

However, it is our opinion that this will 
require a “whole-community approach”, 
with AI testing, validation, standards and 
compatibility built-in to the development 
cycle. By comparison, a market-driven 
approach may deliver disaggregated 
minimum-viable-products, motivated 
more by commercial concerns, rather 
than a joined-up Bushfire defense 
ecosystem. 

We are calling this ecosystem level 
approach to developing a vision 
of an AI enabled cyber-command, 
‘CATCOM.ai’

General Benefit of AI-assisted 
Cyber-Command for Bushfires 

Effective bushfire management ideally 
requires an enhanced cyber-command 
infrastructure due to the extreme 
challenge and complexity of fighting 
fires, but also the overwhelming 
complexity in integrating and 
managing advanced geospatial, AI and 
communication technology. Moreover, 
any application of advanced technology 
to complex, dynamic and stressful 
environments context is key. Solutions 
must be closely tailored to the specific 
requirements of target users. 

CONCLUSION
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Speeding up the OODA loop 
(Orient, Observe, Decide, Act).

ML offers the ability to process and 
exploit large volumes of information, 
however there still remains a lack 
of clarity around what AI brings to a 
disaster scenario. After consultation 
with experienced fire-fighters and 
Military Capability Development (MDC) 
professionals, we’ve heard clearly that 
they don’t want to feel removed from 
any decision making loop, rather they 
want the ability to combine different 
data streams and use AI to help make 
sense of the available information; 
giving users the ‘right amount’ of 
information, at the right time. 

As such, the development of the 
CATCOM system is crucially tailored 
as a “decision support tool” - 
with numerous implications in 
the infrastructure architecture. 
A mature ML product will also 
produce measurable performance 
enhancements to the OODA loop 
(Orient, Observe, Decide, Act). Often 
attempts at these kinds of technologies 
are built around speeding up the OODA 
loop to make informed decisions at a 
rate that is faster than the progress 
of the fire. Developing infrastructure 
to speed up the detect, collect, predict 
and disseminate process, and provide a 
measurable metric will be of immense 
value in the coming decades. 

CATCOM amplifies and galvanises 

existing Australian investments in 
in-space systems (e.g., satellites 
and bespoke instrumentation) 
and satellite-enabled services on 
earth (through Earth observation, 
communications, positioning and 
timing). As the space economy evolves, 
the balance of opportunity will shift 
from big to agile - and integrated. 
While global competitors in space 
chase macro capabilities such as 
launch systems and other hardware 
based infrastructure, the unexploited 
opportunity in space is to broker the 
system. That is: mastering autonomy, 
sensing, reasoning and decision 
making - being the brains, rather than 
the brawn, of humanity’s future in 
space. 

The opportunity we see is catalyse 
the development of a collaborative 
ecosystem between academia and 
tech providers, working with the fire-
fighting services and agencies as a hub 
for an integrated platform like the 
CATCOM Cyber-command, becoming 
an ‘integration hub’ building global 
leadership, attracting and developing 
talent and inward investment. 
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ABOUT THE  
DATA QUEST FORMAT
The Data Quest is an accelerated research sprint designed to explore the solvability 
of challenge questions using a combination of machine learning and remote sensing 
data. The outcomes of the Data Quest are proof-of-concept data science workflows 
that show a question can be tackled using available data and state-of-the-art-
algorithms. 

In the parlance of NASA’s Technology Readiness Level (TRL) system, Data Quest products 
are a level 2 outcome: Technology Concept Formulation, providing enough evidence to 
proceed from the concept stage to an experimental proof. At the start of the journey up 
the TRL ladder, the focus is on assessing the available data and its quality - hence the 
name ‘Data Quest’.

The Data Quest has a few ‘moving parts’ 
that are key to its success:

1. Focused challenges: Tightly articulated 
challenge questions allow the teams 
freedom to explore while still setting 
achievable aims during the research 
sprint. 

2. Interdisciplinary teams: Each team is 
carefully chosen from the brightest 
minds available and is a unique 
combination of experts suited to the 
research task - a ‘dream team’. 

3. Week-long sprint plus book-ends: 
A part-time on-ramp period allows 
the teams to spin-up and establish 
tight working relationships before the 
intense one-week research period. The 
off-ramp period facilitates efforts to 
document and finalise the research.

4. Experienced mentors: Team leads with 
experience in the problem domain (e.g., 
bushfire science or Earth observations) 
and machine learning guide and advise 
the teams. These are drawn from the 
partner institutions. 

5. Community of partners: Data Quest, 
like FDL, is built on a network of 
partners that supply critical expertise, 
provide access to essential data, help 
set the challenge questions and inform 
the direction of research through use-
case stories.
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4
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PRESENTATIONS

RESEARCH POSTERS
& TECH MEMOS

DATA QUEST
IN NUMBERS

65 Applicants

LIVE STREAMED SHOWCASE

581 LIVE VIEWERS

17
Researchers

9
Faculty

Scion Crown Research Institute, 
Australian National University,
Northwest Nazarene University,
Fireball, University of Oxford, 
UBISOFT, UNSW Canberra

CSIRO, FrontierSI, Scion Crown 
Research Institute, Serenitec, 
Swinburne University, The 
University of Adelaide, University 
of Tasmania, University of the 
Sunshine Coast

2020

MEDIA MENTIONS

CEDA, THE GREATER GOOD 
PODCAST  AUG 13

DEDICATED TV SPOT ON 7-NEWS  
AUG 24

ITNEWS.COM.AU, NSW TURNS 
TO AI TO PREDICT BUSHFIRE 
ACTIVITY AUG 24

ABC RADIO INTERVIEW AUG 26

SCION CROWN RESEARCH 
ARTICLE AUG 28
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